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Abstract Our research project aimed at understanding the complexity of the construction
of knowledge in a CAS environment. Basing our work on the French instrumental
approach, in particular the Task–Technique–Theory (T–T–T) theoretical frame as adapted
from Chevallard’s Anthropological Theory of Didactics, we were mindful that a careful
task design process was needed in order to promote in students rich and meaningful
learning. In this paper, we explore further Lagrange’s (2000) conjecture that the learning of
techniques can foster conceptual understanding by investigating at close range the task-
based activity of a pair of 10th grade students—activity that illustrates the ways in which
the use of symbolic calculators along with appropriate tasks can stimulate the emergence of
epistemic actions within technique-oriented algebraic activity.

Keywords Constructing knowledge ! Task design ! Task-technique-theory framework !
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1 Introduction

Researchers, for a decade or so, have been asking themselves why teachers of mathematics
make little use of technology in the classroom. For example, Guin and Trouche (1999,
pp. 195–196) have pointed out: ‘‘No more than 15% of teachers include graphic calculators
in their teaching, in spite of the fact that all students have a graphic calculator in scientific
classrooms (in the Fifth and Sixth Forms). Teachers appear to resist the integration of new
technologies even at elementary level’’. Why do they resist the use of technological tools
(calculators, computers, etc.) in the teaching of mathematics?
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One of the reasons concerns tasks—the need for new tasks, the need to design tasks that
can make use of the technology so as to improve mathematical learning. In responding to
the above question in informal conversations, some teachers expressed that with tech-
nology, when presented with a ‘‘problem’’ or an ‘‘exercise’’, students do not need to know
much about the mathematical content. They added that, unfortunately, it is enough to know
how to use the calculator or computer to obtain an immediate answer. Consequently, they
believe that technology does not help in the construction of mathematical knowledge. We
note that a great majority of the old problems, which teachers used in the past, become
inadequate in technological environments. Other teachers, with boundless enthusiasm,
think that many problems are solved with the use of technology. They might focus on the
teaching of techniques and developing in their students the false belief that mathematical
problems are solved using a technological tool (‘‘button-press techniques’’) without wor-
rying deeply about the problem itself. Few teachers are centred on analyzing the pros and
cons of the use of technology and the importance of designing new activities that allow for
deeper understanding when constructing knowledge. We do not have to point out either
that there is not a great deal produced, on the part of researchers, with respect to didactic
situations that could support teachers in these new classroom environments.

The reflections of some investigators on the resistance of teachers to using technology in
the classroom have shown that there are many variables to take into account, and that the
problem is much more complex than we initially believed. Artigue (2000, pp. 8–9), who
has analyzed why it is that in the last 20 years of instruction in computational environ-
ments there has not been a real impact in the mathematics classroom, points to four
reasons:

1. The poor educational legitimacy of computer technologies as opposed to their social
and scientific legitimacy;

2. The underestimation of issues linked to the computerization of mathematical
knowledge;

3. The dominant opposition between the technical and conceptual dimensions of
mathematical activity;

4. The underestimation of the complexity of instrumentation processes.

Both the underestimation of issues linked to the computerization of mathematical
knowledge and the dominant opposition between the technical and conceptual dimensions
of mathematical activity—Artigue’s second and third points above—are suggested by, for
example, the following two studies.

Let us refer to a significant example, concerning the following question to 100
students 18 years old: lim

x!1
ln xþ 10 sin x: All students’ responses were correct in the

modality without the calculator (50 students). On the other hand, confronted with the
rather disturbing graph produced by the calculator, students could not come to terms
with the inconsistency of the results displayed by the machine: in this case only 10%
of the answers were correct (another group of 50 students). (Guin and Trouche 1999,
p. 197)

From here, it seems that students’ theoretical understandings in a paper-and-pencil
environment were adequate to answer this kind of question; but for the other group, their
understanding was rather limited. This example suggests that it might have proved useful
for the researchers to have designed tasks that were both more elaborated and which might
have promoted interactions between paper-and-pencil and machine activity.
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Another instance is drawn from Tall (2000), who describes a group of students using
Derive, within a purely technical approach to the calculus of limits, students who could not
provide a theoretical explanation of the concept at stake. Tall has stated:

The same phenomenon occurred when the students were asked to explain the meaning

of lim
h!0

f xþhð Þ%f xð Þ
h : Here, both the Derive group and one of the paper-and-pencil groups

had participated in a discussion of the meaning of the notation. All of the non-Derive
group gave a satisfactory theoretical explanation of the concept, but none of the
Derive group could give any theoretical explanation. (p. 213)

Here, we think that the non-Derive group had developed a conceptual approach to
understanding the concept of derivative, while the Derive group had paid more attention to
mastering the software and less to the conceptual aspects. Also, as in the French study, it
seems that the Derive group might have benefited from task activity involving both paper
and pencil and machine.

While both of these examples touch upon aspects related to tasks and their design, at a
deeper level they lay bare some fundamental questions regarding the relation between
technical and conceptual aspects of mathematical understanding. For example, what is the
role of technique in mathematical conceptualization? Is there an interaction between the
two? Can we speak about a conceptual understanding of a technique? If so, what might it
look like? Skemp’s (1976) classic article on instrumental and relational understanding,
which was controversial at the time, advanced the notion of two different ways of learning.
The point is interesting since from a perspective of the constructivism of the 1970s and
1980s, it seemed that there was only a single way to approach the construction of math-
ematical knowledge and it was one of relational understanding (a conceptual approach).
Skemp expressed recognition of these two kinds of learning. For him, relational under-
standing involves thinking about what to do and why it should be done, and instrumental
understanding involves having rules without reasons. In the past, the two kinds of
knowledge were viewed as separate entities.

This recognition of different ways of constructing mathematical knowledge marked a
new path of investigation centred on the search for relationships between these two types
of knowledge (see, e.g., conceptual and procedural knowledge in Hiebert 1986, among
others). Hiebert and Lefevre (1986, p. 16) have stated that knowledge of procedures can
promote conceptual growth: ‘‘It appears that on occasion procedural knowledge takes the
lead and spurs the development of new concepts. For example, Gelman and Meck (1986, in
the same volume) present a scenario in which children use already acquired counting skills
to promote the development of an ordinal concept of number.’’ Although the aim of the
Hiebert monograph was to describe the relationships between conceptual and procedural
knowledge, it was primarily for the domain of school arithmetic that these potential
relationships were in fact discussed. For algebra and calculus, the traditional dichotomy
between the procedural and the conceptual was to remain for several years.

Then, a major step forward was achieved in the 1990s by the French school of didactical
research. The so-called instrumental approach to tool use emerged. It is noted that the use
of the term instrumental in this context is not at all the same as that given by Skemp.
According to Artigue (2002), one can clearly distinguish two central influences within the
instrumental approach, both of which had begun to develop at about the same time. One
influence came from cognitive ergonomics (Vérillon and Rabardel 1995); the other from
the anthropological theory of didactics (Chevallard 1999). The main emphasis of the
cognitive-ergonomic approach is instrumental genesis and the formation of mental
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schemes related to the processes whereby an artifact becomes an instrument of thought for
the user. On the other hand, the main emphasis coming from the didactical anthropological
approach is a focus on the techniques and theories that students develop, within institu-
tional settings.

Artigue (2000, p. 10) has discussed Chevallard’s anthropological theory of didactics,
one in which mathematical objects emerge from systems of practice (or praxeologies) that
involve:

• tasks in which the objects are embedded,
• techniques used to solve these tasks,
• technology, a discourse that explains and justifies the techniques, and finally
• theory, discourse justifying the technological discourse.

Artigue (2002) and her collaborators have reduced Chevallard’s four components of
practice (Task, Technique, Technology, Theory) to three: Task, Technique, and Theory. In
so doing, technology and theory have been combined into the one term, theory, thus giving
the theoretical component a wider meaning than is usual in the anthropological approach,
but also reserving the term technology for the use of computational artefacts within the
learning environment. In their adaptation of Chevallard’s theory, Artigue and her fellow
researchers have also pointed out that, within the T-T-T theoretical framework, technique
too must be given a wider meaning than is usually the case in educational discourse.
Techniques are, according to Artigue (2002, p. 248), ‘‘a complex assembly of reasoning
and routine work’’—a stance that is consistent with that of Chevallard. In other words,
theoretical elements are threaded through techniques. Thus, there is not an exact parallel
between the terms conceptual/procedural and theoretical/technical. The wider meaning
given in the T–T–T theoretical frame to techniques as including some theoretical aspects is
not generally found in the current usage of the terms procedures and skills.

Lagrange (2003, p. 271) has emphasized that it is particularly during the process of
learning a new technique that theoretical/conceptual elements come into play: ‘‘Technique
plays an epistemic role by contributing to an understanding of the objects that it handles,
particularly during its elaboration. It also serves as an object for conceptual reflections
when compared with other techniques and when discussed with regard to consistency’’.
The notion that technique plays an epistemic role, especially during its elaboration, is an
important one. Hershkowitz et al. (2001, p. 203), in their research on mathematical
abstraction, have defined epistemic actions as ‘‘mental actions by means of which
knowledge is used or constructed’’. They have identified the following three epistemic
actions as central components in the genesis of abstraction: constructing, recognizing, and
building-with. According to Pontecorvo and Girardet (1993, p. 368), the epistemic actions
practiced by novices when learning a particular domain resemble the particular epistemic
actions that are carried out by experts when interpreting objects and phenomena of that
domain. So if, as Lagrange (2003) argues, technique plays an epistemic role—especially
during its elaboration—then several questions arise. For example, in which ways does this
epistemic role manifest itself? How do students try to make sense of and understand a new
technique within a CAS environment? How do theoretical/conceptual and technical aspects
interact within this technical genesis? To what extent do the epistemic actions of students
within a particular mathematical domain resemble those of mathematical experts?

From his classroom research with Mounier and Aldon (1996) on the task of factoring
xn - 1, Lagrange (2000) found evidence to support his conjecture regarding the epistemic
role played by technique; the learning of specific techniques did foster students’ conceptual
understanding in that it led them to develop certain proofs. Similarly, results reported by
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Kieran et al. (2006) showed how techniques gave rise to theoretical thinking and vice versa
within the context of the designed tasks. However, neither the Lagrange nor the Kieran and
Drijvers studies analyzed their data with respect to specific epistemic actions; rather the
results were presented in terms of the conceptual understandings that emerged from the
dialectical relation between the technical and the theoretical within the classroom settings
in which the tasks were engaged. The study that is being reported in the present paper
builds upon the previous work in this area by focusing on a pair of students—their
mathematical discourse and actions when working together on one of the same CAS tasks
that was designed for the study described by Kieran and Drijvers (an elaboration of the
Mounier and Aldon task of factoring xn - 1). The present study distinguishes itself from
the classroom study of Kieran and Drijvers, first, by its attention to a peer interaction in
order to understand more deeply the processes of articulating paper-and-pencil and CAS
techniques in generating conceptual knowledge, second, by its focus on the epistemic
actions involved in this knowledge construction and the ways in which both the task
sequence and the CAS tool contribute to the provocation of these epistemic actions. The
moments during the peer interactions when these epistemic actions seemed to be most
crucial with respect to the construction of knowledge will be referred to within the paper as
epistemic moments.

In sum, the present paper has the precise intention of understanding the complexity of
the process of construction of knowledge as per Artigue’s second and third points above
(i.e., the underestimation of issues linked to the computerization of mathematical knowl-
edge and the dominant opposition between the technical and conceptual dimensions of
mathematical activity), within the T–T–T theoretical framework. Tasks and their design
are a necessary adjunct to coming to understand this complexity. In addition, the fact that
current curriculum reforms support the use of technology in students’ learning of mathe-
matics, it becomes even more important to understand the nature of the tasks that can
promote mathematical learning.

2 Objective

In the past, a great deal of research was carried out related to paper-and-pencil tasks. Also,
for a couple of decades, research concentrated on how the use of technology fosters the
construction of knowledge, but without taking into account the importance of the inter-
action between a paper-and-pencil task and a related CAS task. Then, with our theoretical
approach, we were interested in the interactions among the processes related to the triad
Task–Technique–Theory. But, what kinds of relationships are important to analyse? And,
how? To be more specific, we intended to use our theoretical approach to better understand
the relationships of the triad TASK–TECHNIQUE–THEORY, and how students construct
articulations between techniques and theories when working on a task. Under this
approach, the technique used in a task involving paper and pencil needs to be articulated
with the corresponding CAS technique. From this point of view, our analysis takes into
account the students’ production of techniques.

3 Methodology

In a large project involving CAS use in the mathematics classroom, we designed eight
activities (i.e., multitask sequences, the sixth of which is the focus of this paper) related to
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the algebra curriculum in Québec, for the Secondary 4 level (10th grade). We agreed with
Artigue’s (2002) notion that, in an instrumental learning environment, it is important to
conceive long sequences of didactical activities so as to promote a better understanding.
Our activities thus constitute sequences of interrelated tasks in paper-and-pencil and CAS
environments. The activities were experimented in:

• three classes (two in an anglophone school, and one in a francophone school) in
Montreal, Canada, during the period from September to February (2004–2005);

• one class in Portland, USA;
• two classes in Toluca, Mexico;
• Repetition of the experiment in the Montreal anglophone school with a different

classroom group of students (September–December 2005).

The first few activities were designed to promote not only a dialectic between the
technical and theoretical, and the interaction between the paper-and-pencil and CAS
media, but also the process of instrumental genesis (see Trouche 2002), that is, to promote
within students the processes whereby a technological artefact becomes an instrument of
thought; but a description of those processes is not part of this particular report.

We initially asked the three teachers in Montreal who were to be involved in the study
to work on the activities and to give us feedback regarding the content and the amount of
time that students would need to work each one. They also gave us their opinion about the
difficulties that students might have with them. We then reconstructed the activities with
their feedback in mind.

For the study, each student had a CAS calculator (TI-92 Plus) during the experimen-
tation (at school and at home). All the activities in the classroom were audio- and video-
recorded.

In our experimental approach we interviewed students in different modalities:

(a) Interviews with pairs of students, while at the same time all the rest of the students
worked on the activity in the classroom setting;

(b) Interviews with individual students, while at the same time the activity was worked
on by the rest of the students in the classroom;

(c) Individual interviews with some students, after they had worked on an activity in the
classroom.

Our reflections in this paper are restricted to modality (a) above. The interviewees are a
pair of students who usually work together in class. From this point of view, the results are
closely related to those that might occur in the more typical sociocultural learning setting
of the classroom. This marks a difference from studies that analyze exclusively individual
actions within an interview. More specifically, we were interested in: (1) the construction
of knowledge during a peer interaction in a CAS environment; (2) the kinds of techniques
that emerge when solving a task, sometimes resulting in different representations; (3) the
kinds of theories that are generated; and (4) the ways in which the students constructed
articulations among representations, techniques, and theories.

When we were in the process of generating our sets of activities, we came across an
article involving the task: ‘‘Factor xn – 1’’ (Mounier and Aldon 1996). The authors showed
how rich this task was with students in 11th grade in France. However, Mounier and
Aldon’s aims were related to students’ proving general factorizations of xn - 1. They
thought that the computer could liberate the technical aspects of computing by hand, with
the expectation that students would:
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– use various heuristic strategies, e.g., organized trials, searching for regularities or
counterexamples,

– control their investigations by organizing checks and using feedback,
– keep sight of the main goal.

But the students, who were working in pairs in the Derive laboratory, did not go as far in
their proving attempts as their instructors had anticipated. Lagrange (2000, p. 19), in his
analysis of the various phases of the Mounier and Aldon study, remarked that:

The ‘Derive’ factorizations just hide the general factorizations that constitute the
mathematical objective. … It is therefore not surprising that [the student] is not able
to take some distance from the Derive factorizations so as to conceive more general
factorizations. [our translation]

We agree with Lagrange’s analysis; however, contrary to Mounier and Aldon’s vision
of ‘‘liberating the technical aspects of computing by hand,’’ (Mounier and Aldon 1996,
p. 52), we believe that it is important to focus on the reconciling of techniques used in a
paper-and-pencil task with those used in a corresponding CAS task.

As we mentioned above, our objective was related to the Québec curriculum and we
were working with students at the 10th-grade level. At this level, pupils are not sure what a
proof is (as opposed to the 11th grade students in the Mounier and Aldon study); in general,
students in Québec at this level are asked to give arguments to support and justify their
findings. The multitask sequence that we elaborated around the Mounier and Aldon fac-
torization task was designed to take at least 2 sessions of 65 minutes each. For the single
interview situation, which took place while the rest of the class was working on the same
activity, it was also planned that the two participants C and P would, on the day following
the interview, return to their class for the completion of the activity. This completion was
to include whole-class discussion on the arguments to support the conjectures that had been
generated by C and P, and by the other students of the class, the day before.

4 Rationale for the Design for the Activity

Given that the theme of factorization was touched upon in some of our prior activities, we
thought that, for the given activity, we could give the students an opportunity to further
develop their previous knowledge of factoring and construct more complex mathematical
knowledge with the assistance of CAS technology.

Our research group in their preliminary approach to the issue of task design took into
consideration the following aspects of algebraic activity as indicated by Kieran (2004,
pp. 23–24):

• Generational activity;
• Transformational activity;
• Global/meta-level activity.

In thinking about the design of our activities, Kieran’s frame regarding the nature of
transformational activity (dealing with factoring, expanding, substituting, etc.), and global/
meta-level activity (dealing with problem-solving, modelling, noticing structure, general-
izing, analyzing relationships, justifying, proving, and predicting) was taken into account,
in combination with Artigue’s reflections regarding the two points mentioned earlier, as
well as Lagrange’s (2000) perspective with respect to the role of the techniques. Regarding
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the latter, Kieran (2004, p. 31) has emphasized that, ‘‘The fact that conceptual understanding
can come with technique will surely put the study of algebraic transformations among the
fruitful and interesting areas of research to be carried out in algebra learning during the
years to come.’’ But she adds that, ‘‘from the point of view of the curriculum, the global/
meta-level activities cannot be separated from the other activities of algebra’’ (p. 24).

Thus, the main goal of the activity, which centred on the factoring of the xn - 1 family
of polynomials, n being a positive integer, was related to the construction of knowledge. As
such, it also involved conjecturing, generalizing, and promoting a need for argumentation.
We were also mindful of the need to foster an articulation between the knowledge gen-
erated using one kind of technique (a CAS technique) with the knowledge generated using
another kind of technique (a paper-and-pencil technique), and using cognitive conflict as a
motor for solving a mathematical problem.

4.1 What is a Task? What is a Technique? and, What is a Theory?

In general, the word task refers to an undertaking, a piece of work to be done. Our tasks
had mathematical objects embedded within them. Chevallard (1999) notes that a mathe-
matical object emerges in a system of practices, its evolution being explained in terms of
human action (praxeology). Chevallard takes a task to be a problem.

A technique is a method for carrying out, or the ability to perform, a task. As mentioned
earlier, we agree with Artigue and Chevallard that using a technique involves not only
routine work. That is, the ability to perform a task could imply a complex reasoning. In the
past, mathematics educators had a tendency to view the technical aspects involved in
solving a task as routine work, forgetting the possible epistemic value with respect to
generating knowledge (Lagrange 2000). It is also the case that, sometimes, a student can
generate his/her own technique to accomplish a task, because the technique needed to
accomplish the task is not at hand. Then, complex reasoning is required. In our study, we
try to detect and explain epistemic moments such as these.

From Artigue (2000, 2002) and Lagrange’s (2000, 2003) view of Chevallard’s
anthropology theory, a theory is seen as a discourse justifying or explaining a technique.
Specifically, in our case, a theory is the cognitive structure constructed by the students,
which emerges through the process of resolution of an activity (multitask sequence), and
which can become visible to the observer by means of the student’s actions and discourse.
Indeed, this process is related to an articulation among representations and techniques.

Then, in this document, when referring to activity, we mean the set of sequenced tasks
that have been designed to promote not only the use of certain techniques and the artic-
ulation among them, but also the evocation of conjecturing and the use of argumentation to
give support to the conjecturing (i.e., theory).

It is well known that in executing a task with paper and pencil, like multiplying
300 9 198, we can use a technique that is completely different from that used with a
mental approach. For mental computation, we might multiply 300 9 200 and then subtract
600 [i.e., 300 9 198 = 300(200 - 2)]. In other words, given a task, we can often choose
from among different techniques. Similarly, in our work, we distinguish between a task in a
paper-and-pencil environment and a task in a CAS environment. For example, if a task
asks students to factor the expression x4 - 1, then one technique a student could use is the
telescoping technique, that is x4 - 1 = (x - 1)(x3 ? x2 ? x ? 1), whereby when these
two factors are multiplied together the intermediate terms of the product telescope together
to leave just the first and the last terms of the product. But the use of a CAS calculator, like
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TI-92 Plus, TI-Voyage 200 or TI-nspire CAS, leads to the result: x4 – 1 = (x – 1)
(x ? 1)(x2 ? 1). The question then arises as to how to reconcile the two results obtained
with different techniques. One possibility in this case is to do the following:

x4 % 1 ¼ x% 1ð Þ x3 þ x2 þ xþ 1
! "

¼ x% 1ð Þ x2 xþ 1ð Þ þ 1 xþ 1ð Þ
! "

¼ x% 1ð Þ x2 þ 1
! "

xþ 1ð Þ
! "

¼ x% 1ð Þ xþ 1ð Þ x2 þ 1
! "

:

That is more or less what some students in the classroom study reported by Kieran et al.
(2006) did, as is shown in Fig. 1. Taking this as an example, we say that a student can be
confronted with different representations of the same object [in the example: x4 - 1, (x - 1)
(x3 ? x2 ? x ? 1), and (x - 1)(x ? 1)(x2 ? 1)] when trying to construct a cognitive
structure (related to the equivalence of expressions). This requires a ‘‘coordination of rep-
resentations’’ at the same time that the student is constructing a ‘‘coordination between
techniques’’. That is, through a treatment of and/or conversion between representations,
students could construct a cognitive structure involving a ‘‘coordination of representations’’
that could in turn promote a ‘‘coordination between techniques’’. In our case, the treatment of
representations is related to the construction of a coordination between a paper-and-pencil
technique and a CAS technique (as suggested by the action depicted in Fig. 1).

Regarding the issue of tasks and their design, it is important to add that, when we are
presenting a task to students, and when they in turn generate a conjecture from their results,
they will, at times, create their own tasks and techniques to validate their conjecture. This
point is vital to our methodology, and we will come back to it later.

4.2 Notation

The notations we use in this paper are the following:

• Task with paper and pencil TASKP-P;
• Task with CAS TASKCAS;
• Technique involving paper and pencil TECHP-P;
• Technique involving CAS TECHCAS;
• Semiotic production with paper and pencil PRODP-P;
• Semiotic production with CAS PRODCAS;
• A P–P task provoking a semiotic production TASKP-P ####!

TECHP-P
PRODP-P that depends

on a technique TECHP-P.

Fig. 1 Different techniques depending on the environment (from Kieran et al. 2006)
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• A CAS task provoking a semiotic production TASKCAS ####!
TECHCAS

PRODCAS that depends
on a technique TECHCAS.

• Conversion between productions:PRODP-P ? PRODCAS and vice versaPRODP-P /
PRODCAS.

• Articulation between techniques:

• Construction of a theory related to a technique:

• Articulation between techniques and construction of a theory:

As we said before, in our approach we would like to make a distinction between a
paper-and-pencil environment and a CAS environment. A task in a paper-and-pencil
environment (TASKp-p) provokes the use of a technique (TECHP-P) that in general is
different from that which is used in a CAS environment (TECHCAS), as shown with the
example in Fig. 1. The production a student carries out on paper we are denoting as a
semiotic production in a paper-and-pencil environment (PRODP-P). The result a student
produces using a CAS (on the screen of his/her calculator) we are denoting as a semiotic
production in a CAS environment (PRODCAS). The theoretical construction could be
different in a paper-and-pencil environment (THEOP-P) from in a CAS environment
(THEOCAS); so we are distinguishing both of them. And, if a theory is constructed as a
generalization of the coordination between the two media-based theories, we are denoting
this as a theory (THEO), one that is understood to be a theory and which is recognized in a
social context (by teachers, researchers, mathematicians, etc.).

5 The Sequences of the Designed Activity

When we designed the activity as a set of multitask sequences, a first consideration was the
interplay of paper and pencil and CAS. A second consideration was the theorizing that
would be elicited by the specific tasks of each sequence. These considerations led to the
creation of an activity with the following task sequences.
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5.1 First Sequence (Remembering Factors)

The preliminary task (see Table 1) was related to remembering the factorization of several
expressions, in particular, the difference of squares and the difference of cubes in a paper-
and-pencil environment and then verifying with the calculator (command FACTOR). The
expressions were: a2 – b2; a3 – b3; x2 – 1; x3 – 1.

5.2 Second Sequence

THEO1: Given the expression (x - 1) (xn-1 ? xn-2 ?!!!? x ? 1) for a specific n, it is
equivalent to: (xn - 1)—this theory based on the telescoping technique.

In this particular sequence, we ask the students to carry out a task and to justify their
approach. The previous sequence, which was preliminary to this, permits in this second
sequence the construction of the telescoping technique. In other words, the first part of the
task (see Table 2) was conceived to promote the development of this technical knowledge
by expanding (x - 1)(x ? 1); (x - 1)(x2 ? x ? 1) in a TASKP-P and then predicting the
product of (x - 1)(x3 ? x2 ? x ? 1) without doing any algebraic manipulation. After that,
verification was asked for, first with paper and pencil, and then with the calculator. This led
to the request to compare expressions:What do the following expressions have in common:
(x - 1)(x ? 1); (x - 1)(x2 ? x ? 1) and (x - 1)(x3 ? x2 ? x ? 1)? Immediately after-
ward, students were asked to predict the factorization of x5 - 1 and then to explain why

Table 1 Tasks from the first
sequence (remembering factors)

1. (a) Before using your calculator, try to recall the factorization of
each algebraic expression listed in the left column of this table

Factorization using paper
and pencil

Verification using FACTOR
(show result displayed by the CAS)

a2 – b2 =

a3 – b3 =

x2 – 1 =

x3 – 1 =

Table 2 Tasks to promote a telescoping technique and its theory (THEO1)

1. (b) Perform the indicated operations (using paper and pencil)
(x - 1)(x ? 1) =
(x - 1)(x2 ? x ? 1) =

2. (a) Without doing any algebraic manipulation, anticipate the result of the following product:
(x - 1)(x3 ? x2 ? x ? 1) =

(b) Verify the anticipated result above using paper and pencil, and then using the calculator.

(c) What do the following three expressions have in common? And, also, how do they differ?
(x - 1)(x ? 1), (x - 1)(x2 ? x ? 1), and (x - 1)(x3 ? x2 ? x ? 1).

(d) How do you explain the fact that the following products result in a binomial: two binomials, a binomial
with a trinomial, and a binomial with a quadrinomial?

(e) On the basis of the expressions we have found so far, predict a factorization of the expression x5 - 1.

(f) Explain why the product (x - 1) (x15 ? x14 ? x13 ? !!! ? x2 ? x ? 1) gives the result x16 - 1?

(g) Is your explanation (in (f), above) also valid for the following equality: (x - 1)
(x134 ? x133 ? x132 ? !!! ? x2 ? x ? 1) = x135 - 1? Explain:
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(x - 1)(x14 ? x13 ?!!!? x ? 1) gives x15 - 1. And finally, we asked if their explanation
would also be valid for the following equality:

x% 1ð Þ x134 þ x133 þ x132 þ . . .þ xþ 1
! "

¼ x135 % 1:
Our expectation at this stage was that students would analyze relationships, notice

structure, and generalize so as to predict the factorization of expressions like (x135 - 1).
That is, they would be constructing a conceptual structure encompassing the telescoping
technique and the theoretical notion regarding the factoring of xn - 1 (i.e., the theory that
(x - 1) and (xn-1 ? xn-2 ?!!!? x ? 1) for a given integer value of n, are factors of
xn – 1—this theoretical fact, supported by the telescoping technique).

5.3 Third Sequence (Promoting an Internal Articulation Among Representations and
Techniques)

THEO2: The equivalence of ‘‘TECHP-P and PRODP-P’’ with ‘‘TECHCAS and
PRODCAS’’.

It is in this sequence that we decided to have students confront the technique developed in
the previous sequence when attempting the task (TASKP-P) related to the telescoping
technique, with the technique using the calculator (TECHCAS). This confrontation, abso-
lutely necessary from our theoretical perspective regarding the reconciling of techniques,
was intended to encourage change in students’ knowledge. That is, in this sequence, the
task promotes a confrontation between the technique just learned [i.e., (x – 1)
(xn-1 ? xn-2 ?!!!? x ? 1) = xn – 1] and the results given by the calculator. Indeed, we
were promoting in students the construction of a cognitive structure, a theory, related to the
treatment of representations and conversion between techniques—one that could generate a
‘‘coordination of representations,’’ and in turn, a ‘‘coordination between techniques’’
(or reconciling of techniques).We designed this multitask sequence so as to give the students
the opportunity to cope with the results that the calculator provides (i.e., specific factors in a
more complete factorization)—an output that hides the general factorization—as was sig-
nalled by Lagrange in an earlier quote (2000, p. 19).

First, we asked students to factor an expression using paper and pencil (see Table 3),
and then, to use the calculator. Finally, we asked them to reconcile, if appropriate, the two
results obtained. Accordingly, our strategy for filling in the table in this sequence was to
ask the students to work the task row-by-row, and not column-by-column. The subsequent
sequences were designed so as to continue motivating the construction of the cognitive
structure described above in the previous paragraph.

Table 3 Promoting a coordination of techniques

If, for a given row, the results in the left and middle columns differ, reconcile the two by using algebraic
manipulations in the right hand column

Factorization using
paper and pencil

Result produced by
FACTOR command

Calculation to reconcile
the two, if necessary

x2 – 1 =

x3 – 1 =

x4 – 1 =

x5 – 1 =

x6 – 1 =
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5.4 Fourth Sequence

THEO3: The conjecture that (xn - 1) will have exactly two factors, (x - 1) and
(xn-1 ? xn-2 ?!!!? x ? 1), when n is odd (a false conjecture).

Taking into account that in the third sequence the students working the multitask
sequence as far as x6 - 1 (see Table 3) could have constructed a coordination of tech-
niques, we wanted them to produce a preliminary conjecture (see Table 4) before
continuing with the extension of this task. In response to this conjecturing task, we
believed that a first conjecture—a false one—might arise: ‘‘If n is odd, xn - 1 contains
exactly two factors (x - 1) and (xn-1 ? xn-2 ?!!!? x ? 1)’’. We expected pupils to reject
eventually this first conjecture—when they would be working on the fifth multitask
sequence of the activity. That is, the fourth sequence would lead to the conception of a
preliminary conjecture and then the work on the next sequence would provide the
opportunity to reject it. This rejection would occur because, when factoring x9 - 1 (see
Table 5), students would obtain more than two factors. As the reader can see, in our design,
it was very important to pose the question shown in Table 4, which was inserted between
the two sequences.

Our expectation for the three questions was that students would answer as follows:

(i) n must be odd (x2 - 1 likely being viewed as a kind of exception),
(ii) n must be even,
(iii) n must be even.

Table 4 Conjectures of the fourth sequence

Conjecture, in general, for what numbers n will the factorization of xn - 1:

(i) contain exactly two factors?

(ii) contain more than two factors?

(iii) include (x ? 1) as a factor?

Table 5 A task promoting a confrontation regarding the pupils’ conjecture produced in the fourth sequence

If, for a given row, the results in the left and middle columns differ, reconcile the two by using algebraic
manipulations in the right hand column

Factorization using
paper and pencil

Result produced by
FACTOR command

Calculation to reconcile the two,
if necessary

x7 – 1 =

x8 – 1 =

x9 – 1 =

x10 – 1 =

x11 – 1 =

x12 – 1 =

x13 – 1 =
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5.5 Fifth Sequence (Involving Conceptual Change—Rejecting a Prior Conjecture and
Generating a New One)

THEO4: Rejecting previous conjectures to produce a new one: (xn - 1) will have exactly
two factors, (x - 1) and (xn-1 ? xn-2 ?!!!? x ? 1), when n is a prime number.

If students had in fact been led to generate THEO3, we wanted them to confront their
thinking by means of the continuation of the task shown in Table 5. With n = 9, we
wanted to provoke a cognitive conflict in the students—have them to see it as a coun-
terexample and reject their preliminary conjecture that, ‘‘If n is odd, xn - 1 contains
exactly two factors (x - 1) and (xn-1 ? xn-2 ?!!!? x ? 1)’’. Here, in this sequence,
students would discover the contradiction and try to cope with it, thus being in a state of
cognitive conflict. Neither the researcher nor the teacher would signal the contradiction.
It was intended that students would resolve their conflict by rebuilding their conjecture to
produce a new one. This task, created with the aim of provoking THEO4, is crucial in our
design of the whole activity.

With these tasks, we thought that a complex structure (theory) could be constructed by
the students. The case of n = 9 would function as a counterexample to their conjecture;
thus this task could give them a clue to correct their conjecture and to construct a more
complex theoretical structure. This cognitive structure, rich in connections, could permit
the students to correct the conjecture generated in the fourth sequence. Then, we asked
them to express once again these conjectures (a global/meta-level activity) at the end of
this part of the activity so as to know whether a conceptual change had occurred [a repeat
of the conjectural task of the fourth sequence (Table 4)].

It is important to point out that, if students are expressing a new conjecture regarding the
relation of prime numbers as exponents to the number of factors, they are considered as
well to be constructing the related theory that composite numbers as exponents yield more
than two factors.

5.6 Sixth Sequence (Coordinating Theories or Distinguishing Among Theories)

In order to be able to analyze the new structure constructed by the students, we designed
the tasks shown in Table 6 (factorization of x2004 – 1, x3003 - 1, x853 - 1 and specific
questions about the factors obtained); the answers to those questions could give us a better
idea about the nature of the theoretical knowledge that the students had constructed.

5.7 Seventh Sequence (Justifying a Conjecture—or Deepening of Theory—Through
Argumentation)

The task for this sequence was to explain why (x ? 1) is always a factor of xn - 1 for even
values of n, n C 2. Taking into account the level of the students, we didn’t expect a formal
proof, but a kind of deep discussion and arguments to support their conjecture1. As we said
before, this sequence was designed to be worked in small groups, and discussed in plenary.
We are not treating this part of the experimentation in this document (see Kieran et al.
2006, for an account of the whole-class debate on this sequence).

1 As a perspective for future research, it could be of interest to consider elaborating a task design for older
students that promotes discussion regarding the number of factors in a complete factorization of xn-1, the
number of factors depending on the number of divisors of n. If q divides n, then n = pq, p being an integer,
and xn - 1 = xpq - 1 = (xq)p - 1. Thus, the complete factorization of xn - 1 has all the factors of xq - 1.
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6 Analysis of the Interview of a Pair of Students

At this stage of the experimentation, as mentioned earlier, students had worked on five
previous activities, regularly using the CAS calculator. In the interview, the students
used the calculator without any difficulty as they worked through the task sequences.
They were freely using it whenever they wanted to test any conjectures that they had
generated.

In the introduction, we pointed out that we were interested in analyzing relationships
of the triad TASK–TECHNIQUE–THEORY in a pair-wise interaction of students in a CAS
environment. In analyzing C and P’s performance (notation: C and P are used for the
students and I for the interviewer-researcher), we can say that their work was har-
monious; thought and action were performed as if by one person. C and P were used
to working together in the classroom. There was only one calculator on the table,
placed between the two boys, and it was connected to a panel display that was pro-
jected onto a larger screen. So, if P was using the calculator, with the projection C was
able to see what P was doing, and vice versa. Both were writing down on the single
task-sheet that was provided.

The analysis of the interview indicated several important epistemic moments through
which the two students passed during the interview:

• Constructing and verifying a technique (noticing structure, analyzing relationships and
predicting), namely the telescoping technique,

• Reconciling paper-and-pencil technique with CAS technique,
• Noticing more structures and generating several conjectures (false conjectures), for

example: ‘‘The only time it contains two factors is when it is odd…’’,
• Testing and analyzing their conjecture (arriving at a counterexample: n = 9),
• Moving from the fact that disturbed the rule to the Eureka moment.

We now present our analysis of the interview according to these five epistemic
moments.

Table 6 Seeking confirmation
about students’ conjectures

Without using your calculator, answer the following questions

1. Does x2004 - 1

(i) contain more than two factors?

(ii) include (x ? 1) as a factor?

Please explain:

2. Does x3003 - 1

(i) contain more than two factors?

(ii) include (x ? 1) as a factor?

Please explain:

3. Does x853 - 1

(i) contain more than two factors?

(ii) include (x ? 1) as a factor

Please explain:
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6.1 Constructing and Verifying a Technique (Noticing Structure, Analyzing
Relationships and Predicting), Namely the Telescoping Technique (First and
Second Sequences)

In this part, C was thinking aloud and P was using the calculator. When C was saying
something, P was checking it out with the calculator to verify if it worked or not, and the
other way around.

Verbatim Student productions and our interpretation

01:14 P: Yeah, Ok. Before using your calculator, try to
recall the factorization of each algebraic expression
listed in the left column of this table [reads from first
page, exercise 1(a) of Sequence 1]

01:21 C: So the eh, first one is a squared minus b
squared so it just ends up being

TASKP-P ####!
TECHP-P

PRODP-P

01:26 P: a plus b, a minus b

01:28 C: Right, and then uh, the next one you have a
cubed minus b cubed [a3 - b3] which eh, you can just
write as a plus b squared on the outside bracket
multiplied by a minus b [(a ? b)2 (a - b)], ‘cause it
is a difference of squares but you are left over at a
positive a plus b.

Remembering facts, right and wrong results:
a2 – b2 = (a ? b)(a - b)
a3 – b3 = (a ? b)2(a - b)

01:45 I: Ok.

01:47 P: Isn’t it a plus b times a squared minus eh, two
ab plus b squared. [(a ? b) (a2 - 2ab ? b2)]

P is remembering correctly.
a3 – b3 = (a ? b)(a2 – 2ab ? b2)

01:53 C: Yeah, and then the, eh [points at third
expression of exercise 1(a) of Sequence 1].

01:58 P: The third one is kind of like the same thing as
the first one.

02:02 C: Yeah, such as x minus one; x plus one. And x
cubed minus one [points at fourth expression of
exercise 1(a) of Activity 6] is just a difference of
cubes again. So, it’s just eh, [pause] just showing you
different forms of it; sometimes replacing a variable
with a natural number. [Pause] And then eh, it says
use the calculator to do, [C picks up calculator and P
scribbles on paper] so

x2 – 1 = (x ? 1)(x - 1)
x3 – 1 =
C is remembering about replacing a variable
by a number.

C takes the calculator.

02:32 C: So, you just [inaudible] actually you can eh;
you just type it in, right [Types into calculator:
Factor(a2 - b2); the calculator displayed:
(a ? b)(a - b)], and this comes out to what our
answer was and then same thing it was with the cubes.
[Types in calculator: Factor(a3 - b3); The calculator
displayed: (a - b)(a2 ? ab ? b2)] So, here is the
answer we ended up coming up with. So, they are all
the same, like in that sense which is difference of
cubes or difference of squares. [Types in calculator:
Factor(x2 - 1); The calculator displayed: (x - 1)
(x ? 1); types in calculator: Factor(x3 - 1); The
calculator displayed: (x – 1)(x2 ? x ? 1)] Yeah.

TASKCAS ####!
TECHCAS

PRODCAS

Factor(a2 - b2). The calculator displayed:
(a ? b)(a - b).

Factor(a3 - b3). The calculator displayed:
(a - b)(a2 ? ab ? b2).

Here they probably realized they were
wrong before.

Factor(x2 - 1): (x – 1)(x ? 1).
Factor(x3 - 1): (x - 1)(x2 ? x ? 1).
This is a first confrontation between p/p and
CAS techniques. Indeed, P and C initially
had different techniques for calculating
(a3 - b3).
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First of all, we can see that C was recalling incorrectly the factorization of (a3 - b3)
and the calculator gave him the opportunity to verify the alternate technique that P was
remembering. Here we can note that the answer given by the calculator was taken as right
without further verification. After a while the interviewer asks P a question.

Verbatim Interpretation

03:43 I: I see. How did you suddenly come upon the fact
that you [pause]?

03:50 P: Oh, when I saw the calculator. P expresses that he feels comfortable using the
calculator and that he finds it helpful.

03:51 I: You saw the calculator.

03:53 P: Yeah it helps.

03:54 C: It helps. [P writes in the box for exercise 1(a) of
Activity 6] Then eh, so that is it for that section with the
cubes you are always going to have a variable that is not
squared but that ends up [pause] sometimes confusing.

From that moment, they were using the calculator consistently, answering what was asked
in themultitask sequence.When they arrived at question 2(a), they anticipated the result of the
product (x - 1)(x3 ? x2 ? x ? 1) without doing any algebraic manipulation. After reading
the question,C gave a right answer (minute 9:20) but he did notwrite it down.WhenP took the
pen to write down the answer (minute 10:22), he wrote (x - 1)(x3 ? x2 ? x ? 1) =
x4 ? x3 – 1. The researcher askedC if he agreed andC said ‘‘No…’’. Working algebraically
and step by step, P found that the product of (x - 1)(x3 ? x2 ? x ? 1) was x4 ? x3 ?
x2 ? x – x3 – x2 – x - 1 and P stopped there. What is interesting here is that C took the pen
and canceled out some terms, arriving at (x4 - 1), thereby suggesting a prefiguring of the
telescoping technique. Immediately P picked up the calculator (possibly attempting to coor-
dinate paper-and-pencil productionswith CAS productions) when the researcher asked if they
agreed on the answer. C began to answer, verbalizing what they did and saying ‘‘they’’ were
right the first time. It seems that P had some doubts.

Verbatim Interpretation

14:01 P: Yeah must have [pause] also

14:08 I: Are you satisfied, with the result you got? [Camera turns
towards calculator: Expand((x - 1)*(x^3 ? x^2 ? x ? 1)); The
calculator displayed: x4 - 1]

14:13 P: Its just that I don’t understand how, negative one [pause]
when you keep squaring it, it changes the sign but when you have
it, difference of cubes, it is still negative one, you have difference
of squares it’s negative one and when you have x to the power of
four it’s always negative one. Why is it never positive?

Even if P did the algebraic
manipulations, he’s having some
doubts about the right answer.

14:34 C: Because like it is always a negative there, like that is the
meaning of a difference of squares or cubes or, whatever is that,
one side is negative one side is positive. So, I think no matter
what, you are always going to end up with a negative one, like if
you did this thing for power of five it would be the same.

C seems more confident and
verbalizing the process once again, it
seems he’s conjecturing a
mathematical fact. That is, THEO1:
The Telescoping Technique.

They continued with the sequence. At about the 22nd minute, they had begun to
conceive a technique. Even if C was not talking about the number n as a general number,
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when he was saying, ‘‘like whatever you have like, no matter what you have in there, …’’,
probably he was not thinking about a specific number, even if immediately he said, ‘‘if you
had x to the power of 20… it would be like a difference of to the power of twenty-one
[(x - 1)(x20 ? x19 ?!!!? x ? 1) = (x21 - 1)] Because, hmm, everything ends up can-
celling out…’’. It seems he was verbalizing the technique in a general way even if he
mentioned some examples.

Verbatim Interpretation

22:31 C: The right bracket I guess is, you
can say is always positive, so uh, like if
you try, it ends up like, x minus one always
ends up canceling, hmm, the terms,
because hmm, like whatever you have like,
no matter what you have in there, if you
had x to the power of twenty, the answer
like, like if you had x to the power of
twenty is your first variable on the right
hand bracket, it would be like a difference
of to the power of twenty-one. Because,
hmm, everything ends up canceling out.
Because, like, the left hand just ends up
like making sure everything useless is
taken out of it and you are just left with the
first term on the right side plus one to the
exponent power.

THEO1: The Telescoping technique (conjecture)

24:55 C: And then the minus one just
cancels everything except itself, it can’t
cancel.

25:00 P: Yeah.

25:06 C: And then, uh. [pause]. And this
only works if it’s, like there is no missing
terms. Like, you are not allowed to, I don’t
think, to have a missing term.

Here C is convincing himself about the conjecture and
pointing out the importance of having all the terms. The
technique involving ‘‘the missing term’’ is important and
he will come back to it a few minutes later.

They continue testing their theoretical conjecture with the
calculator, using some examples that they themselves
have generated.

TASKCAS ####!
TECHCAS

PRODCAS

25:27 P: [P types into the calculator:
Expand((x - 1)*(x^5 ? x^4 ? x^3 ?
x^2 ? x ? 1); Error display: Missing ‘‘)’’;
P adds ‘‘)’’; the calculator displayed:
x6 - 1]

P tries with x6 - 1 and C tries with x7 - 1.

26:20 C: So, uh, there we just said that the x
[P types into the calculator: Expand((x - 1)*
(x^6 ? x^5 ? x^4 ? x^3 ? x^2 ? x ? 1);
the calculator displayed: x7 - 1] in the left
hand sidemake the first exponent too high to
be cancelled out and the minus one cancels
out all the terms except itself. So, the result
is always going to be the leftmost x term in
the right hand bracket plus one to its
exponent power and then minus one.

26:50 I: Does that fit with your thinking P?

26:51 P: Yeah.
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Probably, C thought that their approach of verifying their conjecture case by case was
not limited to specific cases, and then a new technique appeared—erasing one term (x2)
from the expression x6 ? x5 ? x4 ? x3 ? x2 ? x ? 1. You can see also that P was fol-
lowing C’s idea. We think they did this as a general idea, that is, to exclude ‘‘any term’’ in
the expression, and asked the calculator to Expand((x - 1)*(x6 ? x5 ? x4 ? x3 ? x ? 1))
as a means to test and confirm their expectations.

This epistemic moment, one that involved testing the limits of their new technique,
reflects an epistemic action that is engaged in by mathematical experts when exploring or
constructing new techniques. It is also related to activity involving ‘‘preuves’’ in the sense
of Balacheff (1987)2. We remind the reader that, at tenth grade, these students do not really
know what a proof is. Indeed, it was planned that at the end of the task, the students should
work at searching for arguments that could validate their conjectures within a classroom
discussion (see Kieran et al. 2006).

It is important to highlight the role of the calculator in this process. When C and P
began with paper and pencil, they produced some errors. The calculator permitted them to

continued

Verbatim Interpretation

26:52 I: May I ask what you were doing on
the calculator? [Points at calculator]

26:54 P: I was just checking to make sure
that the rule worked for everything.

26:57 I: So, you.

26:58 P: Yeah, you have your right bracket
and you add a term and the result, like the
first term of the result will always be the
first term of the left bracket times the first
term of the right bracket.

Here we can see that P is trying some examples to convince
himself that the conjecture ‘‘works for all numbers’’.

27:16 I: So, you are just checking to see.

27:17 P: Yeah, I was just checking to see if
it worked.

27:18 C: Like, does it work if one of the
variables in the right hand bracket is
missing? Like, if you take out the x
squared?

C is repeating his technique involving the missing term and
he’s proposing to take out x2 to see what will happen. In
Balacheff’s sense (1987, p. 148), this kind of
argumentation is related to a ‘‘preuve’’—an important
step in arriving at a proof.

27:27 P: Yeah, it probably won’t work, but
I’ll check.

27:30 I: Well, could you, before the actual
checking, could you think of what might
happen?

27:35 P: It would just give you a really
[inaudible] answer. It would probably just
restate it, one entry. [Erases: x^2 from
calculator entry]

P understands C’s technique and he’s putting it into
practice.

2 Balacheff (1987, p. 148) has said: ‘‘We call a ‘preuve’ an explanation that is accepted by a given
community at a given moment. This decision can be the object of a debate whose significance lies in the
need to determine a validation system that is common to the interlocutors’’ [our translation]. Note that the
French word ‘preuve’ does not translate into the English word ‘proof’, the French word for ‘proof’ being
‘démonstration’. The French word ‘preuve’ has at times been translated into English as ‘evidence’, ‘war-
rant’, ‘supporting argument’, and ‘justification’.
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become aware of their errors and to notice some structure. But even more important, the
calculator provided them with a kind of extension to their minds (see Donald 1991), in the
sense that the strategies developed in the process of resolution of a task could be verified
immediately to have the feedback that permitted them to go farther.

At this moment, with the result obtained on the screen, they were convinced that they had
discovered a rule or a pattern: The telescoping technique and away of theorizing about it. The
investigator requested some elaboration of their finding (see what C says at 29:55 below).

Verbatim Interpretation

29:41 I: But the explanation, hmm, is based on what? I mean, if you are
going to explain to somebody why that happens.

29:49 C: Because, uh, [pause] well, like we said before.

29:54 P: But it’s just the pattern that we’ve found.

29:55 C: Because the x times the x to the power of fifteen, uh, makes it so
that it’s a higher exponent number than anything the minus one would
produce so, it can’t cancel anything out. But, uh so, like the, like
everything multiplied by the x would be one exponent higher than it
was. The minus one just makes it a negative [inaudible] that exponent
what it is, so it will be, like, so the only reason that the first term never
gets cancelled out is because it is the highest term. So, if you are doing
minus one by everything there, if all the terms are already one higher,
you can’t reach that one. So, everything else cancels out except that.

Verbalizing the telescoping
technique (THEO1).

At this moment we can say they showed they knew the telescoping technique according to
our a priori analysis. The arguments given by P and C indicate that they had constructed a
theoretical justification in Chevallard’s sense. The CAS environment permitted them to
correct the errors of the paper-and-pencil approach and, more importantly, allowed for the
emergence of an articulation between techniques ‘‘Because the x times the x to the power
of…’’ (see the verbalization above) and theory ‘‘(x - 1)(x15 ? x14 ?!!!? x ? 1) = (x16 - 1)’’.
Their strategies and expectations were confirmed by the results of the calculator.

6.2 Reconciling Paper-and-Pencil Technique with CAS Technique

As we mentioned earlier, we put special attention in the multitask sequence on the process
of reconciling productions with paper and pencil and with CAS (see Table 3). Even if the
tasks of the third sequence seemed more or less easy for the students, for us it was crucial
to provide for explicit reconciling of productions involving paper-and-pencil and CAS
techniques. In this reconciling, it is important to note that it includes not just an articulation
among representations, but much more than that—it includes an articulation among rep-
resentations and techniques.

Verbatim Interpretation

33:59 P: I noticed there is a pattern, just like we
discovered before, so it’s, so it’s going to be x minus
one at the beginning, and then increasing powers of x
for the first term [pause] in the right bracket.

34:10 C: But uh, for x to the power of four minus one, the
calculator, uh, it takes out one of the x plus ones, and if
you (inaudible).

C noticed that the calculator is giving a different
answer for the factorization of x4 - 1.
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The technique they used to reconcile the productions obtained with a paper-and-pencil
technique and a CAS technique was to multiply only the factors that were different
within their answers. That is, in this case (x ? 1)(x2 ? 1) = (x3 ? x2 ? x ? 1). It was P
who began to write, using this technique, and C agreed. At minute 37:12, C gave an
explanation as to why they have equivalent expressions but different representations:
‘‘But, uh, I think the calculator is factoring it more than we are. ‘Cause that’s taking it
into its simplest possible form, we’re taking it into a pattern which we recognize.’’ The
researcher trying to get more information asked them if they could obtain exactly what
the calculator provided in the two cases, x4 - 1 and x6 - 1. Here P (39:02) answered
first, offering another technique to show the equivalence of the expressions: ‘‘Well, we
got our result, x minus one, times x cubed, plus x squared, plus x, plus one. And, so,
I just factored out the second bracket, ‘cause, it can still be factored by taking out
x squared plus one, and, so yeah, you get another bracket: which is x plus one.’’ That is,
probably he was thinking about x3 ? x2 ? x ? 1 = x2(x ? 1) ? 1(x ? 1). This answer
was justifying the process from paper-and-pencil technique to CAS technique

. The researcher, noticing the direction of

their approach, insisted: ‘‘…Could you have started differently to obtain what the cal-
culator obtained?’’ The answer of C (39:55) was: ‘‘Could you do difference of
squares?…’’ Following this idea, P and C tried a new technique, leading to C (43:17)
saying: ‘‘Yeah, because uh, it’s really (inaudible). ‘Cause what you are showing here
is uh, that the x to the power of six minus one, can be split in two terms. But then, one of
its terms can be split even more, ‘cause it’s a difference of cubes.’’ As can be
seen, they were trying to explain a different process that could have been used

by the calculator: . This epistemic moment

is related to the construction of a coordination between techniques

.

continued

Verbatim Interpretation

34:23 P: x to the five minus one.

34:25 C: Yeah, it works (inaudible). Yeah, ‘cause this
one takes out the x plus one, because it thinks it can
factor it more, but if you were to multiply the x plus
one to the x squared plus one, you end up with what
P wrote, which was x to the power of three plus x
squared, plus x, plus one.

C advanced the idea that the calculator can give, in
this case, more factors.

34:44 I: Ok. That’s for x to the?

34:46 C: Power of four.

34:47 P: Minus one.

34:48 C: And then

34:50 I: Ok P, are you clear on what C just said
there?

Here we can say that they are not doubting their
results, indeed they are thinking they have
equivalent expressions.

34:53 P: Yeah, seems that the calculator tried to
factor it even more. I think, the answer is still right
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6.3 Noticing More Structures and Generating a Conjecture (a False One): ‘‘The Only
Time it Contains Two Factors is when it is Odd…’’ (Third and Fourth Sequences)

In the fourth sequence, students were asked to conjecture about different factors that could
be obtained when factoring xn - 1 (see Table 4). To answer these questions, C and P were
obliged to analyze what they had done just before. After reading the questions and ana-
lyzing their previous productions, P seemed to fix on the second question regarding those
cases where they obtained more than two factors, while C was focusing on the first
question related to obtaining exactly two factors.

Verbatim Interpretation

45:27 P: You, won’t after,
‘cause’ x, ‘cause’ two is not an
even number, is not a prime
number.

Remembering facts (even if wrongly); P says 2 is not a prime number
(this is the first time that the term ‘‘prime number’’ is mentioned, but C
seems not to be paying attention to this).

P seems to have a conjecture about even numbers (second question). C
seems to focus rather on the first question.

THEO3a: Conjecture that x
n - 1 contains more than two factors when n

is even (false statement, they did not exclude n = 2).

It seems that P and C agreed implicitly with P’s proposition and they
wrote it down (see Fig. 2). Then, they concentrated on the first
question related to odd exponents.

THEO3: Conjecture that xn - 1 contains exactly two factors when n is
odd (false statement).

45:33 I: Can you show me what
you are pointing out there?
[Inaudible]

45:35 P: I guess, it’s just for all
even numbers. That you will
have, uh, they’ll contain,
they’ll contain more than two
factors. [Goes to look at their
worksheet; see Table 3 of the
task sequence]

45:48 C: The only, yeah, the only
time it contains two factors is
when it is odd. I think which
means it can be, [pause] yeah,
which means that it can’t be uh,
[points at paper] like, the uh,
our pattern can’t be broken
down anymore. ‘Cause’ it
always ends up being all
positive. And uh, then, because
[he looks at first column of
their worksheet], it’s sort of
hard to explain.

What is interesting in this epistemic moment, is that P states that, ‘‘…two is not an even
number, is not a prime number.’’ Even if he was wrong in his comment, it is the first time
that one of them mentions ‘‘prime number’’. Also P gives a general rule for even numbers
(THEO3a) related to the second and third questions. Even if C is advancing a conjecture
dealing with odd numbers (THEO3), it seems that C is disturbed about something, but
he is not expressing it clearly at this moment. The arguments about noticing structure
(in Kieran’s 2004 sense) and conjecturing are promoting the construction of THEO3, as we
hypothesized in our a priori analysis.
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6.4 Testing and Analyzing Their Conjecture (Arriving at a Counterexample: n = 9)
(Fifth and Sixth Sequences)

The interviewer asked C and P to summarize their conjectures thus far. While doing this,
they were also moving on to the subsequent expressions of the fifth sequence, for integer
values of n from 7 to 13, which allowed them to test further their conjecture regarding odd
exponents.

Verbatim Interpretation

46:35 C: Yeah. [Types into calculator: Expand(x^7 - 1); The
calculator displayed: x7 - 1] factor(x^7 - 1) [the calculator
displayed (x - 1)(x6 ? x5 ? x4 ? x3 ? x2 ? x ? 1)] Yeah,
because any time you plug in an odd number as the exponent
power, it’s uh, the calculator always stays at the most
simplified [pause]

Continuing with further examples to
convince themselves of the veracity of
their conjecture about THEO3.

C was astonished by the result, indeed here
was an exception to the rule (do we have
the right to say counter-example? O.K.
Not yet, but this is a big step in their
process of learning)

C makes explicit that there are ‘exceptions’
to the rule.

46:50 C: [types into the calculator: Factor(x^9 - 1); the
calculator displayed: (x - 1)(x2 ? x ? 1) (x6 ? x3 ? 1)]
No ???

47:02 I: What happened there C?

47:06 C: Hmm, it actually, at a certain point finds uh, that it
can be factored more. [types into the calculator:
Factor(x^11 - 1); The calculator displayed: (x - 1)
(x10 ? x9 ? x8 ? x7 ? x6 ? x5 ? x4 ? x3 ? x2 ? x ? 1)]
Uh, the only case there x to the nine, x to the eleven, didn’t
work. Uh [pause], I think there is like occasional, uh,
exceptions to the rule [Types into the calculator:
Factor(x^13 - 1); The calculator displayed the entire
expression, but we use ellipsis dots here
(x12 ? x11 ?!!!? x3 ? x2 ? x ? 1)] Like, of what we were
saying about it being, uh [Types into the calculator:
Factor(x^15 - 1)]

C found a counterexample with n = 9, which led him to search for more exceptions to
the rule. Our a priori prediction worked as designed; C tried to resolve the cognitive
conflict. This moment of surprise signalled the beginning of a series of epistemic actions
whereby C would attempt to resolve what was clearly a problem. C was visibly uncom-
fortable about the contradiction he was facing. Could we say that that his uncomfortable
feeling was related to his being sensitive to a contradiction? That is what construction of
mathematical knowledge is all about! (See Hitt 2007). We will return to this question in
Sect. 6.5.

Verbatim Interpretation

47:28 I:Which is the rulewe are debating
here? Which, which is the rule that
you’re finding exceptions to?

Here C makes explicit that the conjecture is not a true statement
(the exceptions to the rule are becoming counterexamples).
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continued

Verbatim Interpretation

47:32 C: We are trying to find, uh,
we said that all, odd, all times that
the exponent was odd it would only
have two, but that wasn’t true
[looks at calculator; the calculator
displayed (partial display shown
here): Factor(x^15 - 1) equals
(x - 1)(x2 ? x ? 1)(x4 ? x3 ?
x2 ? x ? 1)…], in the few cases
now, because uh, it finds what it
simplifies. So, but, I’m not sure
how you would be able to tell what
are the restrictions.

47:51 I: Hmm, well is there anything
in particular about the numbers that
you found exceptions for? Do they,
why don’t you look at those?

48:03 C: [Goes over previous results
in the calculator] They were x to
the power of fifteen, hmm [pause],
x to the power of nine, wait if x to
the power of twenty-one works,
then it may be, uh

48:16 I: P, do you see what C is
doing there?

THEO3b: Conjecture that xn - 1 contains exactly two factors
when the exponent is odd and not divisible by 3 (false statement).

We must say that this conjecture was not considered in our a priori
analysis.

48:18 P: Yeah.

48:21 C: [Types into the calculator:
Factor(x^21 - 1); The calculator
displayed (partial display shown
here): (x - 1)(x2 ? x ? 1)
(x6 ? x5 ? x4 ? x3 ? x2 ?
x ? 1)…] I think, right now,
anytime, it’s uh, the exponent can
be divisible by three like, [Types in
calculator Factor(x^27 - 1); The
calculator displayed: (x – 1)
(x2 ? x ? 1)(x6 ? x3 ? 1)
(x18 ? x9 ? 1)] Yeah. [Pause]
Because, just say an odd number
that is divisible by three.
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Here C found, with n = 15 and n = 21, more exceptions to their rule. It is important to
say that after trying n = 15, C tried n = 99. You can see that using the calculator, these
students have an instrument that permits them to analyze extreme cases; in a paper-and-pencil
environment, probably the students would become tired trying out large numbers. C and P
tried out during the minute 48:21 to 49:49: n = 101, n = 11, n = 15, n = 95, n = 5,
n = 103!

Verbatim Interpretation

50:19 P: When the exponent is an odd number that
is not divisible by three it’ll contain, most of the
time, exactly two factors.

[THEO3c]: Conjecture that xn - 1 contains exactly
two factors when the exponent is not divisible by 3
with a few restrictions (see Fig. 3 for the various
restrictions they were to formulate).50:26 I: Most of the time?

50:27 P: Yeah.

50:28 C: ‘Cause it can’t be definite’. ‘Cause that 95
[points at the calculator] that we plugged in
(inaudible).

They decided to write down the reformulated version of the conjecture that they had
generated thus far (see Fig. 2).

As we said before, we had considered only that students would conjecture that xn - 1
contains exactly two factors when n is odd (THEO3); but as we observed, the students
generated a succession of various versions of the conjecture, versions that we have referred
to as THEO3b and THEO3c.

6.5 Moving from the Fact that Disturbed the Rule to the Eureka Moment!

Even if they now had a more refined conjecture, they still had an uncomfortable feeling
about the possibility of more exceptions. As was seen above, they had begun to try some
numbers such as, n = 9, n = 27, n = 99. At this point, their explanation was that their

Fig. 2 Revising their conjecture (still false)

Constructing Knowledge Via a Peer Interaction in a CAS Environment

123



conjecture worked for some cases but not for others. They knew that 95 was an exception
to the ‘‘not divisible by 3’’ conjecture. Then C tried 105, 25, 15, and 55 as exponents. He
soon stated that ‘‘it cannot be divisible by 5 either.’’ Then he proceeded to try 14, 21, and
49, concluding that ‘‘it cannot be divisible by 7 either.’’

They kept adding amendments to the written version of their conjecture until they
arrived at the following formulation, which we refer to as THEO3d: The conjecture that
xn - 1 contains exactly two factors for ‘‘odd numbers (for the exponent) not divisible by
three and five, seven’’ (see Fig. 3); but their conjecture was still false.

They were still not convinced about their conjecture; C stated: ‘‘There could be more
than these exceptions.’’ Then, something interesting occurred: They put the calculator to
one side and carried out a holistic analysis of the situation. They went back to some
particular cases for n and focused on its divisors.

In our a priori analysis, we had not considered this as a possible conjecture, that is,
exponents that are odd numbers (excluding prime numbers) not divisible by 3. If we
analyze this conjecture, the first counterexample we can construct is with n = 25. This
number is the first number in the list of odd numbers that is not prime and not divisible by
3. In a paper-and-pencil environment, rejecting their conjecture could be very difficult. As
can easily be seen, trying with n = 25 in a paper-and-pencil environment could be
exhausting for the pupils. On the contrary, with the calculator, they tried numbers not
divisible by 3 like n = 101, 95, and 103. They were clearly in a situation of cognitive
contradiction—that is, a contradiction that has not been pointed out by the teacher but
rather has arisen from their own experience. The uncomfortable feeling that was created in
them could only be removed when they themselves resolved the cognitive contradiction.
Sometimes a pupil may think he has resolved a contradiction, even if this is not the case
from an expert’s point of view. Occasionally, the formal contradiction is resolved, and this
is recognized by an expert (see Hitt 2007).

Then, at a certain moment (57:07) P said: ‘‘Try sixty; sixty is divisible by a lot [C types
on calculator]’’ and C said: ‘‘Yeah, I think it has to do with how many numbers can go into
it.’’ Here the interviewer asked: ‘‘How many numbers can go into it?’’ And C gave an
explanation dealing with the divisors of sixty.

Fig. 3 Final conjecture
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Verbatim Interpretation

55:53 C: But, I think as soon as you get past nine or
whatever, you start running into problems…

The exception to the rule was perturbing the
students; they tried with other numbers keeping in
mind the exception (min. 55 to min. 57).

…
57:07 P: Try sixty; sixty is divisible by a lot [C types
on calculator]

Silence…
57:16 C: Yeah, I think it has to do with how many
numbers can go into it.

Prelude to a new conjecture, the divisors of a
number.

57:19 I: How many numbers can go into it?

56:20 C: Like, sixty is divisible by one, it’s divisible
by two, it’s divisible by three, it’s divisible by four,
five, six.

57:24 P: By four, five, six.

57:27 C: Not seven, [pause] not eight.

57:31 P: Not nine, ten, twelve.

57:30 C: Ten. So, [pause] yeah, but then you are
doubling it up.

57:33 P: Yeah.

57:34 C: But, it’s just, like uh, [pause] at a certain
[pause], prime numbers? [pause] So, a prime
number is twenty-three [he types into the
calculator] Yeah, prime numbers, that’s it. Prime
numbers when it is…

57:51 I: and what are prime numbers?

57:52 P: Wait, what about three, five and seven.

57:53 C: Only divisible by itself. Three, five and
seven, all work.

THEO4: Rejecting previous conjectures to produce a
new one: (xn - 1) will have exactly two factors
[for] all prime number values of n.

57:56 P: They are prime numbers.

57:56 C: Yeah, they all work.

57:58 P: No, but they don’t give you exactly two
factors.

58:00 C: Yeah, they do. [Types in calculator] That’s
what I’m doing [pause] three, five, seven

58:04 P: Yeah they do [Looks at screen] Verifying the conjecture: P was not completely
convinced about the new conjecture, even if C was.

58:06 C: Yeah, prime factors. And nine doesn’t work
because it is not a prime factor. [P crosses out the
answer that he had written (see Fig. 3) and writes:
all prime numbers]

C is convinced about the conjecture as a true
statement.

As we said before, in our a priori analysis of the multitask sequences, we proposed the
factoring of x9 - 1 with the aim of provoking a confrontation with students’ preliminary
conjecture. We wanted them to realize that there was a problem, thereby arriving at a
cognitive contradiction. They perceived the failure of their preliminary conjecture, and
gave arguments that were not conceived of in our a priori analysis. But they concluded as
we predicted: That a change in the conjecture was necessary—that there were exceptions
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as when n is divisible by 3, by 5 or by 7. After formulating these conjectures, they still felt
something was wrong. They continued their search for clear counterexamples and finally
generated the conjecture THEO4 regarding prime numbers (see Fig. 3)—thus resolving the
state of cognitive contradiction in which they had found themselves.

We would like to stress the importance of the role of the calculator in this part of their
work. Indeed, the articulation among representations and among techniques was generated
largely because the calculator was used as an instrument. They continued with the rest of
the activity (see Table 6) and they used the results they had already obtained, showing
confidence and answering correctly.

7 Summary of Theoretical Approach and Discussion

Our results have highlighted the importance of the theoretical triad TASK–TECHNIQUE–
THEORY when designing mathematical tasks. However, in this concluding section, we focus
on three aspects in particular. First, we discuss the issue of the way in which students
constructed knowledge in our CAS environment. Then, we return to those components of
our analysis that related to the question of epistemic actions within the genesis of a
technique. Finally, we treat some additional issues associated with designing technological
activity within the theoretical T–T–T approach.

7.1 Constructing Knowledge in a CAS Environment

Working solely with paper and pencil, students (in our case C and P) made some errors.
The CAS calculator permitted them to correct these errors and eventually to construct a
theory through the telescoping technique (xn - 1 has two factors). Once the theory was
constructed, we wanted the students to confront the results obtained using this paper-and-
pencil technique for factoring xn - 1, for specific values of n, with the sometimes-
different-looking results produced by the calculator. The process of reconciling equivalent
expressions that are represented differently promoted an articulation among representations
and techniques and, at the same time, allowed students to notice structures and generate
conjectures.

Something unexpected was the fact that students generated their own tasks and tech-
niques when trying to convince themselves about their conjectures (see the epistemic
moments related to this). And in this part, the calculator played a principal role. This
occurred specifically within the part of the task where, as expected by the researchers, the
students constructed a conjecture that xn - 1 has exactly two factors when n is odd (this
would fail, for example, when n = 9). When the students reached that part of the task that
involved factoring x9 - 1, the teacher and researchers had agreed not to comment that such
a conjecture fails in that case (n = 9). The students could perceive the contradiction and it
was their responsibility to solve the cognitive conflict. We were surprised that, when the
students C and P saw the contradiction, they tried to resolve it by generating another
conjecture, that xn - 1 has exactly two factors when n is odd but not divisible by 3 (this
would fail, for example, when n = 25). The role of the calculator was crucial at this point;
in a paper-and-pencil environment it is difficult to imagine that students might reach the
point of generating such a conjecture and, more important, come to reject it by trying large
numbers. Then they reformulated the conjecture that ‘xn - 1 has exactly two factors when
n is odd and not divisible by 3’ by adding two more restrictions: That the exponent not be
divisible by 5, nor by 7. The CAS allowed them to test extreme cases in order to analyse
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their conjectures and to generalize and theorize results; as a consequence they constructed
knowledge that, in the sense of Kieran (2004), relates to the global meta-level activity of
algebra.

The point is that beginning with a task in a paper-and-pencil environment, students
improved their performance using the calculator. When asked to reconcile results obtained
with the two media (paper-and-pencil and CAS), they began a theorization process that
involved constructing an articulation among representations and techniques. In the con-
struction of conjectures, and in their verification, the role of the calculator was crucial and
permitted the students to construct an articulation among theories (rejecting old ones and
generating new ones). This process is synthesized in Fig. 4.

The experimental results, as much from the point of view of the interviews (as this was
the case with the present study) as from the point of view of what happened in the
classroom (Kieran et al. 2006), allow us to confirm the importance of the use of technology
in the mathematics classroom.

7.2 Epistemic Actions Within the Genesis of a Technique

In our Introduction, we emphasized an important argument made a few years ago by
Lagrange (2003, p. 271): ‘‘Technique plays an epistemic role by contributing to an
understanding of the objects that it handles, particularly during its elaboration.’’ This claim
led us to focus part of our analysis on what we perceived to be the key epistemic moments
during the process of knowledge construction by C and P. The technique that was being
elaborated within the multitask sequences of the given activity was that of factoring xn - 1
for integral values of n. The process of developing various theoretical ideas associated with
this technique involved several epistemic actions on the part of our pair of student
interviewees.

We identified, in particular, the following five epistemic actions, according to which we
structured the presentation of our results: (1) constructing and verifying a technique,
namely the telescoping technique, (2) reconciling paper-and-pencil technique with CAS
technique, (3) noticing more structures and generating several conjectures, (4) testing and
analyzing their new conjectures, and (5) moving from the fact that disturbed the rule to the
Eureka moment. But these were not all the epistemic actions that were engaged in by C and P.
For example, we observed two other, spontaneous, epistemic actions, both of which could

Fig. 4 Students’ construction of knowledge in a T–T–T environment involving both paper and pencil and CAS
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be categorized as ‘testing the domain of validity of a new technique’. The first involved
testing the limits of their new telescoping technique by dropping the x2 term from the
expression x6 ? x5 ? x4 ? x3 ? x2 ? x ? 1 so as to see if, when multiplied by (x - 1), it
would still yield the telescoped result x7 - 1. The second was the use of extreme cases
(e.g., n = 99) in order to test their conjecture regarding the ‘fact’ that odd exponents for
xn - 1 always produced two factors.

Clearly some of the above epistemic actions were induced by the wording of our
designed tasks—actions such as conjecturing, verifying, and reconciling. Others, it could
be argued, were encouraged by the nature and sequencing of the tasks—actions such as
generating new conjectures. Still others were made possible by the presence of the CAS
technology—actions such as testing new conjectures, even the already-noted generating of
new conjectures (as well as the students’ producing of new tasks and techniques whereby
these conjectures could be tested). Still other epistemic actions, and these were completely
unprompted, were a product of the human-mathematical-mind-assisted-by-digital-tech-
nology—actions such as testing the limits of their new telescoping technique by dropping a
term from the expression, and testing their ‘odd-exponent conjecture’ by the use of extreme
cases. All of these various epistemic actions were seen to play a crucial role in developing
the theoretical knowledge underpinning the new technique that was being learned.

Artigue (2002, p. 268) has argued that, ‘‘epistemic value is not something that can be
defined in an absolute way; it depends on contexts, both cognitive and institutional.’’ While
many of the epistemic actions that we identified can be viewed as quite general mathe-
matical reasoning processes (and thus definable in a certain sense), there is no doubt that
the context, that is, the nature of the tasks that we designed, in combination with the
technologies that were involved therein, was instrumental in provoking the epistemic
actions that we observed. In other words, the epistemic value of technique, when that
technique is elaborated within a CAS environment, can be said to depend to a large extent
on the epistemic value of the tasks. One cannot be separated from the other.

7.3 Designing Technological Activity with the Theoretical T–T–T approach

The notation we constructed (as illustrated in Fig. 4 just above) reflects a new way to
represent an analysis of knowledge construction within technological environments, one
that takes into account the theoretical triad Task–Technique–Theory. The analysis of the
interview by means of this method within the T–T–T approach allowed us to detect
epistemic moments as the students articulated representations and techniques.

This analytical perspective also permitted us to observe the ways in which the cognitive
conflict that we had hoped to engender by our task design was resolved by the students,
with the help of their CAS calculators. The fact that the Factor command of the CAS
produces results that are often in a form that is different from that obtained with paper and
pencil—results that were found to be both unexpected and surprising for our students—was
incorporated into our task design to serve as an epistemic motor for developing their
theoretical thinking. In related work, Monaghan and Ozmantar (2006, p. 356) have
highlighted the view of Davydov regarding the role played by internal contradiction in the
growth of thought: ‘‘This progression depends on the ‘disclosure of contradictions between
the aspects of a relationship that is established in an initial abstraction … It is of theo-
retical importance to find and designate these contradictions’ (Davydov 1972/1990,
p. 291).’’ Our design of the multitask sequence not only took into account the internal
contradictions that could be generated in the students, but also provoked the disclosure of
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the contradictions. On the other hand, the task sequence also promoted a need for reflection
that could in turn help the students to resolve the entire sequence without contradiction.

In view of the findings presented in this paper, we consider that teachers could use this
activity in the sociocultural learning setting of the classroom, to promote in their students
some rather deep learning on the mathematical concepts involved in the activity—not only
factorization, but also important aspects of the development of mathematical thinking that
have to do with conjecturing, with the use of counterexamples, the processes of general-
ization, and argumentation. Indeed, our firm belief is that the T–T–T design of tasks, where
an equilibrium exists between paper-and-pencil and technology activities, as we followed
in our experimentation, can fill the gap between the practices of the teacher who rejects the
use of technology in the classroom and those of the enthusiastic teacher who uses tech-
nology in a somewhat naı̈ve way. Our methodology with the T–T–T design promotes a
radical change in the use of technology in the classroom.

Acknowledgments Special thanks are extended to André Boileau and Denis Tanguay (Université du
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