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OUTLINE OF THE PRESENTATION
The first part: The technical-conceptual interface
in algebra and what is meant by conceptual
(theoretical) understanding of algebraic
technique.

The second part: The ways in which students learn
to draw such conceptual aspects from their work
with algebraic techniques in a technology
environment.

The third part: A shift to the perspective of
teaching practice -- some of the issues involved in
planning for the orchestration of task-technique-
theory activity in technological environments.
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1. INTRODUCTION

WHAT IS COMPUTER ALGEBRA
SYSTEM (CAS) TECHNOLOGY?

A computer algebra system (CAS) is a
software program that facilitates
symbolic mathematics. The core
functionality of a CAS is manipulation
of mathematical expressions in
symbolic form (Wikipedia, Sept. 5,
2007)
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1. INTRODUCTION

CAS USE IN SECONDARY SCHOOL
MATHEMATICS CLASSES

While computers and calculators enabled with
symbol-manipulating capabilities have been
considered quite appropriate for student use
in college-level mathematics courses, and in
calculus courses offered at some upper-level
high schools (see, e.g., Heid, 1988; Shaw,
Jean, & Peck, 1997; Zbiek, 2003), such usage
has generally not been the case for secondary
school mathematics up to now.
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1. INTRODUCTION

Many secondary school mathematics teachers
have, in the past, tended to stay away from CAS
technology in their classrooms, preferring that
their students first develop paper-and-pencil
skills in algebra (NCTM, 1999).
However, these attitudes are changing --

based both on research findings and on the leadership
of teachers/mathematics educators (and their impact
on curricula and tool decisions made at ministerial
levels),
as well as on the greater availability of teacher
resources for using this technology at the Grade 9, 10,
and 11 levels of secondary school.
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  1. INTRODUCTION

  SO THEN, WHAT DOES THE
  RESEARCH HAVE TO SAY?

CAS technology has been found to encourage
the use of general mathematical reasoning
processes and to improve student attitude,
according to PME research reported during the
past five years:

“It allows for generating, testing, and improving
    conjectures”

“It allows for developing of awareness and intuition”
“It leads students to explore their own conjectures”
“It provides non-judgmental feedback”
“It develops learner’s confidence”
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1. INTRODUCTION

RESEARCH HAS ALSO FOUND THAT …

CAS can help develop students’
knowledge of algebraic content and skills:

Their understanding of equivalence (Ball,
Pierce, & Stacey, 2003), parameters and
variables (Drijvers, 2003), and literal-symbolic
algebraic objects in general, without “leading
to the atrophy of by-hand symbolic-
manipulation skills or to the slower
development of these skills” (Heid et al.,
2002).
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1. INTRODUCTION

BUT, WHAT ELSE DOES THE
CAS RESEARCH SAY?

Since the mid-1990s, in France, when
CAS started to make their appearance
in secondary school mathematics
classes, researchers (Artigue et al.,
1998) noticed that teachers were
emphasizing the conceptual
dimensions while neglecting the role of
the technical work in algebra learning.
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1. INTRODUCTION

However, this emphasis on conceptual
work was producing neither a clear
lightening of the technical aspects of the
work nor a definite enhancement of
students’ conceptual reflection
(Lagrange, 1996).
From their observations, the research
team of Artigue and her colleagues came
to think of techniques as a link between
tasks and conceptual reflection, in other
words, that the learning of techniques
was vital to related conceptual thinking.
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1. INTRODUCTION

Our research group was intrigued by the
theoretical notion that algebra learning at the
high school level might be conceptualized in
terms of a dynamic among Task-Technique-
Theory (T-T-T) within technological
environments.

And so it came to be that we began a
series of studies in 2002, which continue
to this day, that explored the relations
among task, technique, and theory in the
algebra learning (and teaching) of Year
10 students (15-16 years of age) in CAS
environments.
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1. INTRODUCTION
 In brief, we have found that:

As reported in Kieran & Drijvers, 2006:
Technique and theory emerged in mutual
interaction: Techniques gave rise to
theoretical thinking; and the other way
around, theoretical reflections led students
to develop and use techniques.

As reported in Kieran & Damboise, 2007:
A comparative study of a CAS class and non-
CAS class revealed that the CAS class
improved much more than the non-CAS class
in both technique and theory, but especially
in theory -- and the sequence of lessons was
one where the technical component was
clearly in the forefront.
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1. INTRODUCTION
This brings us to the main question to
be addressed in this talk:

How does the learning of algebraic
technique in a CAS environment lead to
the emergence of students’
theoretical/conceptual growth?
In other words, how is technique rendered
conceptual? What does it mean to have a
conceptual understanding of algebraic
technique?
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2. The interface between
technique and theory in algebra

Note that I will be using the terms conceptual
and theoretical interchangeably.
Note also that the context of this presentation
is related to the letter-symbolic aspects of
algebra. Why?

A great deal of research exists already with respect to the
benefits of multi-representational approaches (e.g., graphical
representations) in making algebraic objects more meaningful
to students.
However, algebra involves more than representational
activity; symbolic transformational activity lies at its core.
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2. The interface between technique and theory in algebra

What is meant by a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC
TECHNIQUE?
We propose that it includes:

Being able to see a certain form in algebraic
expressions and equations, such as a linear or
quadratic form;
Being able to see relationships, such as the
equivalence between factored and expanded
expressions;
Being able to see through algebraic
transformations (the technical aspect) to the
underlying changes in form of the algebraic
object and being able to explain/justify these
changes.
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2. The interface between technique and theory in algebra

Some classic examples of conceptual
understandings in algebra include:

The distinctions
between variables and parameters,
between identities and equations,
between mathematical variables and
programming variables, …

Both the knowledge of the objects to which
the algebraic language refers (generally
numbers and the operations on them) and
the need to include certain semantic aspects
of the mathematical context so as to be able
to interpret the objects being treated. …
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2. The interface between technique and theory in algebra

But what might be some examples of that
which is intended by ‘CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC TECHNIQUE’

1. Seeing through symbols to the
       underlying forms, e.g.,

   (a) seeing x6 - 1 as ((x3)2 - 1)
  and as ((x2)3 - 1),

         and so being able to factor it in 2 ways.
      (b) seeing that x2+5x+6 and x4+7x2+10
                are both of the form ax2+bx+c.
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2. The interface between technique and theory in algebra

 Examples of what is intended by a CONCEPTUAL
 UNDERSTANDING OF ALGEBRAIC TECHNIQUE …

2. Conceptualizing the equivalence of the
factored and expanded forms of algebraic
expressions,
   e.g., awareness that the same numerical

substitution (not a restricted value) in each
step of the transformation process of
expanding will yield the same value: 

   (x+1)(x+2) -- factored form --
              = x(x+2) + 1(x+2)
              = x2 + 2x + x + 2

         = x2 + 3x + 2 -- expanded form --
       and so substituting, say 3, into all four
       expressions is seen to yield 20 for each exp.
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2. The interface between technique and theory in algebra

 Examples of what is intended by a CONCEPTUAL
 UNDERSTANDING OF ALGEBRAIC TECHNIQUE …

3. Coordinating the “nature” of equation
solution(s) with the equivalence relation between
the two expressions that comprise the original
equation, e.g., for the following task,

Given the 3 expressions
x(x2-9), (x+3)(x2-3x)-3x-3, (x2-3x)(x+3),
(a) determine which of these three expressions are
equivalent;
(b) construct an equation using one pair of expressions
that are not equivalent, and find its solution;
(c) construct an equation from another pair of
expressions that are not equivalent and, by logical
reasoning only, determine its solution.
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Exp1: x(x2-9)
Exp2: (x+3)(x2-3x)-3x-3
Expr3: (x2-3x)(x+3)
o Which are equivalent?

Only Exp1 and Exp3 are equivalent.
o An equation using a pair of non-equivalent

expressions? And its solution?
say, Exp1=Exp2
       solution: x=-1(with CAS)

o An equation from another pair of non-
equivalent expressions? And its solution?

       Exp3=Exp2; the solution has to be
    the same as above. Why?

                   (a conceptual understanding allows
                                     one to answer this last question)
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2. The interface between technique and theory in algebra

 Is it important to foster a CONCEPTUAL
UNDERSTANDING OF ALGEBRAIC
TECHNIQUE?

National and international mathematics assessments
during the 1980s and 1990s reported that secondary
school students, in order to cover their lack of
understanding, resorted to memorizing rules and
procedures and that students eventually came to believe
that this activity represented the essence of algebra (e.g.,
Brown et al., 1988).
While more recent reform movements have led to infusing
“real-world” problem-solving activities into algebra
curricula, the traditional dichotomy of skills/procedures
and concepts has tended to remain in algebraic discourse.
Although Skemp (1976) described “relational
understanding” as knowing both the rules and why they
work, there has never been much movement in the
direction of describing what this might mean for algebra.
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The role of tasks in the TTT triad …

At a recent PME Research Forum on
“The Significance of Task Design in
Mathematics Education”, Ainley and
Pratt (2005) -- the organizers of
the Forum -- argued that,
“We see task design as a crucial
element of the learning environment
… [and contend that] the nature of
the task influences the activity of
students.”
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Also, with respect to tasks:

Lagrange (1999) suggested that task
situations ought to be created in such a
way as to “bring about a better
comprehension of mathematical content”
(p. 63) via the progressive acquisition of
techniques in the achievement of a
solution to the task.
Guin and Trouche (1999) added that
tasks should aim at fostering
experimental work (investigation and
anticipation).
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2. The interface between technique and theory in algebra

So, to sum up, before moving on:
With recent advances in

a) the development of theoretical frameworks,
such as that of Task-Technique-Theory,
b) the increasing use of technology in schools,
for example, CAS at the secondary school level,
and
c) the attention being paid to the role that the
nature of the task/situation plays in student
learning,

we are well poised to make headway in
reflecting upon the ways in which technique
can be viewed from a conceptual angle in
the teaching and learning of algebra and, in
fact, how technology can enhance such
conceptualizing of technique.
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3. How Year 10 students in our project drew
conceptual aspects from their work with
algebraic techniques in a CAS environment

Concerning the tasks:
The tasks went beyond merely asking
technique-oriented questions;
The tasks also called upon general
mathematical processes that included:

   observing/focusing, predicting, reflecting, verifying,
explaining, conjecturing, justifying.

Concerning the technologies:
Both CAS and paper-and-pencil were used,
often with requests to coordinate the two;
The CAS provided the data upon which
students formulated conjectures and arrived at
provisional conclusions.
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3. How Year 10 students in our project drew conceptual aspects
from their work with algebraic techniques in CAS environment …

CONCEPTUALIZING THAT EMERGED WHILE
LEARNING NEW TECHNIQUES WITH THE AID
OF CAS TECHNOLOGY:

     (an example from Kieran & Drijvers, 2006)

The task involved factoring (adapted from
Mounier & Aldon, 1996).
The family of expressions: xn - 1
Aim: to arrive at a general form of factorization
for xn - 1 and then to relate this to the
complete factorization of particular cases for
integer values of n from 2 to 13. Proving one
of these cases was part of the two-lesson
sequence, but is not included today.
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One of the initial tasks of the activity
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After students had worked on these questions,
either in groups or individually, the teacher opened
up a whole class discussion and asked students to
state their responses to one particular question.

A perusal of the answers offered
suggests that different students noticed
different things in the pattern of
expressions. The teacher’s aim in having
the whole class discussion was to
encourage students to learn from what
some of their peers had noticed. Here are
some samples of their responses to the
given question.
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What to focus on, what to notice?What to focus on, what to notice?
This student noticed that the exponents
were different in the second brackets.
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This pair of students focused on the “x+1”
that was present at the end of each of the
second brackets.
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This student’s contribution to the whole
class discussion helped others to “refine
their noticing.”
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After arriving at a general form of factorization for
xn-1 based on a few examples,
xn - 1 = (x-1)(xn-1+xn-2 + … x+1), the students
worked on the following task for n being the integers
from 2 to 6, where they were confronted with the
completely factored forms produced by the CAS.
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An example of a student’s work -- first with
p/p (in 1st column), then with CAS (in 2nd
column), and then involving a reconciliation
of the two (in 3rd column) for x4-1.
   This example shows reconciliation by
    multiplying the 2nd and 3rd CAS factors:
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After completing the factorization task for
n = 2 to 6 in xn - 1, students were presented
with the following Conjecture task.
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The following pair of students incorrectly
conjectured that, for all odd for all odd nn’’ss, the
complete factorization of xn-1 would
contain exactly two factors.

Note in the following transcript
excerpts how the CAS played a
pivotal role in allowing them not only
to test their conjecture, but also to
refine successively that conjecture.
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The moment of surprise when their initial
conjecture proves false!
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They wonder: If it is not the case that all
odd n’s produce exactly two factors when
xn-1 is completely factored, then which n’s
will produce this?

Chr i s  Hmm, it actually, at a certain point finds uh, that it can be factored more. [types into calculator 

Factor(x^11–1); The calculator displayed: (x–1) (x
10

+x
9
+x

8
+x

7
+x

6
+x

5
+x

4
+x

3
+x

2
+x+1)]  

Uh, the only case there, x to the nine, x to the eleven, didn’t work. Uh [pause], I think there is like 

occasional, uh, exceptions to the rule [Types into calculator Factor(x^13–1); The calculator 

displayed (x–1)(x
12

+x
11

+ … x
3
+x

2
+x+1)]  

Like, of what we were saying about it being, uh [Types into calculator Factor(x^15–1)] 

we said that all, odd, all times that the exponent was odd it would only have two, but that wasn’t 

true [looks at calculator; the calculator displayed: Factor(x^15-1) equals (x–

1)(x
2
+x+1)(x

4
+x

3
+x

2
+x+1) …]  

In a few cases now, because uh, it finds what it simplifies. So, but, I’m not sure how you would be 

able to tell what were the restrictions. 

Wait, if x to the power of twenty-one works, then it may be, uh. [Types into calculator 

Factor(x^21–1); The calculator displayed: (x–1)(x
2
+x+1)(x

6
+x

5
+x

4
+x

3
+x

2
+x+1 … ]  

I think, right now, anytime, it’s uh, the exponent can be divisible by three like, [Types in 

calculator factor(x^27–1); The calculator displayed: (x–1)(x
2
+x+1)(x

6
+ x

3
+1)(x

18
+x

9
+1). He also 

tried out an extreme case, n=99] 

Yeah. [Pause] Because, just say an odd number that is divisible by three. 
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This led to a first revision of their initial
conjecture
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But they had not quite finished with their
conjecturing and testing of conjectures
with the CAS
Chris [he types into the calculator Factor(x^105-1), followed by Factor(x^25-1), followed by 

Factor(x^15-1)] 

That’s a pattern [typed in Factor(x^55-1)] 

Five is also a restriction. Three’s and five’s. I think it’s a lot more than that (types in 

Factor(x^49-1)] … I’m just finding that, I think it’s when you get past the basic numbers, one 

through nine, you start running into problems. 

Peter Nine gave you three [factors] … Try sixty; sixty is divisible by a lot [Chris types into the 

calculator] 

Chris Yeah, I think it has to do with how many numbers can go into it. Like, sixty is divisible by 

one, it’s divisible by two, it’s divisible by three, it’s divisible by four, five, six, ten, but then 

you  are doubling it up. 

Peter Yeah. 

Chris But, it’s just, like uh, [pause] at a certain [pause], prime numbers? [pause] So, prime number 

is twenty-three [he types into the calculator] Yeah, prime numbers, that’s it! Prime numbers 

when it is… 

Peter Wait, what about three, five and seven. 

Chris Only divisible by itself. Three, five and seven, all work 

Peter They are prime numbers. 

Chris Yeah, they all work 

Peter No, but they don’t give you exactly two factors. 

Chris Yeah, they do. [types into calculator] That’s what I’m doing [pause] three, five, seven 

Peter Yeah they do [looks at screen] 

Chris Yeah, prime factors. And nine doesn’t work because it is not a prime factor. [Peter crosses out 

the answer that he had written previously and writes: all prime numbers] 
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The last revision of their conjecture
regarding the numbers n (i.e., prime
numbers) that yield exactly two factors for
the factorization of xn-1:
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From these excerpts of Chris and Peter,
we have had a glimpse at the role that
CAS technology can play in supporting
algebraic conjecture-making and
conjecture-refining -- allowing these two
students to focus their trials on certain
multiples of the exponent, to try out
extreme cases, … in short, to arrive at a
new conceptualization of the factors for
expressions from a certain family of
polynomials.
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Further evidence for the emergence of
theoretical/conceptual ideas arising from
work with CAS techniques was gathered
from a study we carried out with two
classes of weak algebra students.
(Kieran & Damboise, 2007)

TASK AND TEST DESIGN:
A set of parallel activities was developed -- on
factoring and expanding.
Tasks were identical except that where one class was
to use p/p only, the other class was to use CAS or a
combination of CAS and p/p.
Some tasks were technique-oriented; others were
theory-oriented.
A pretest and posttest were also created with some
questions being technical and others theoretical.
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SOME OF THE TASKS:
from Activity 3 (CAS version)

 

Activity 3 (CAS): Trinomials with positive coefficients and a = 1 (

! 

ax
2

+ bx + c )  

1. Use the calculator in completing the table below. 

Given trinomial (in 

“dissected” form)  

Factored form using 

FACTOR  

Expanded form using 

EXPAN D  

(a) 

! 

x
2

+ (3+ 4)x + 3• 4    

(b) 

! 

x
2 + (3+ 5)x + 3•5    

(c) 

! 

x
2 + (4 + 6)x + 4 •6    

(d) 

! 

x
2

+ (3+ 5)x + 3• 3   

(e) 

! 

x
2

+ (3+ 4)x + 3•6    

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 

2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is factorable? 

2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is factorable? Explain 

and give an example. 

2(d) How would you describe the relation between the factored form and the expanded form of the above trinomials in 

1(a) – 1(c)? 
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And the non-CAS version of the same task:
 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 (

! 

ax
2

+ bx + c ) 

1. Complete the table below by following the example at the beginning of the table. 

Given trinomial (in 
“dissected” form)  

Factored form Expanded form 

Example: 

     

! 

x
2 + (3+ 4)x + 3• 4  

! 

x
2 + (3+ 4)x + 3• 4  

= 

! 

x
2

+ 3x + 4 x + 3• 4  

= 

! 

x(x + 3) + 4(x + 3)  

= 

! 

(x + 3)(x + 4)

! 

 

 

! 

x
2

+ 7x +12  

(a) 

! 

x
2 + (5+ 6)x + 5•6    

(b) 

! 

x
2 + (3+ 5)x + 3•5    

(c) 

! 

x
2 + (4 + 6)x + 4 •6    

(d) 

! 

x
2 + (3+ 5)x + 3• 3   

(e) 

! 

x
2 + (3+ 4)x + 3•6    

2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 

2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 

factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 

it is factorable? Explain and give an example. 

2(d) How would you describe the relation between the factored form and the expanded form 

of the above trinomials in 1(a) – 1(c)? 
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IN THIS STUDY, THE TECHNOLOGY
WAS FOUND TO PLAY SEVERAL
ROLES IN THE CAS CLASS:

it provoked discussion;
it generated exact answers that could be
scrutinized for structure and form;
it helped students to verify their
conjectures, as well as their paper-and-
pencil responses;
it motivated the checking of answers; and
it created a sense of confidence and thus
led to increased interest in algebraic
activity.



46

THE FINDING THAT:
CAS generated exact answers that could
be scrutinized for structure and form

Of all the roles that the CAS played in
this study, this was found to be the most
crucial to the success of these weak
algebra students.
It proved to be the main mechanism
underlying the evolution in the CAS
students’ algebraic thinking.
Ironically, the crucial nature of this role
was first made apparent to us by the
voicing of frustration by one of the
students in the non-CAS class:
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One of the students of the non-CAS class
remarked when faced with these two
questions of the task just seen:

2(c) If a trinomial is not in its “dissected” form but is in its expanded
form, how can you tell if it is factorable? Explain and give an example.
2(d) How would you describe the relation between the factored form
and the expanded form of the above trinomials in 1(a) – 1(c)?

“How can we describe the relation between the
factored form and the expanded form of these
trinomials? – we don’t even know if our paper-
and-pencil factorizations and expansions from
Question 1 are right.”
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This study analyzed the improvements of two
classes of weak algebra students in both
technique (being able to do) and theory (i.e.,
being able to explain why and to note some
structural aspects), in the context of tasks that
invited technical and theoretical development.
At the outset, both the CAS class and the non-
CAS class scored at the same levels in a pretest
that included technical and theoretical
components.
However, the CAS class improved more than the
non-CAS class on both components, but
especially on the theoretical component.
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We see this finding as being of some
interest

Being able to generate exact answers with the
CAS allowed students to examine their CAS work
and to see patterns among answers that they
were sure were correct. This kind of assurance,
which led the CAS students to theorize, was
found to be lacking in the uniquely paper-and-
pencil environment where students made few
theoretical observations. The theoretical
observations made by CAS students worked
hand-in-hand with improving their technical
ability.
In other words, their technique had becometechnique had become
theorizedtheorized, which in turn led to further
improvement in technique.
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4. THE ROLE OF THE TEACHER

Are good tasks and
CAS technology
all that are needed to render
technique conceptual, that is,
to develop a conceptual
understanding of algebraic
technique?
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It would seem not!
Another crucial ingredient is the
teacher’s orchestration of classroom
activity that gives rise to the
conceptualizing of technique in
technology environments
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Characteristics of teachers’ classroom
practice involving CAS technology that relate
to drawing out the conceptual aspects of
technical work in algebra:

• Importance accorded to the
mathematical aspects of the task --
both technical and conceptual;

• Emphasis on the mathematical-
technological similarities/differences;

• Interest in inquiring into the students’
thinking regarding the mathematics of
the task at hand, by asking for their
conjectures, their observations, their
elaborations, and their justifications.
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Characteristics of teachers’ classroom practice involving CAS
technology that relate to drawing out the conceptual aspects
of technical work in algebra: --

Awareness of the many possible roles
that the technology can play,
for example,

Create surprising results
Generate results for the purpose of exploration
Verify other results or conjectures
Serve as a computational assistant

and being able to capitalize on these in
such a way as to encourage student
learning.
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Characteristics of teachers’ classroom practice involving CAS
technology that relate to drawing out the conceptual aspects of
technical work in algebra: --

Having a repertoire of tasks that engage
a variety of learning approaches and
evoke different processes, such as

Provoking cognitive conflict and seeking to resolve
the conflict
Looking for patterns
Generalizing
Activating general mathematical processes, such as
observing, comparing, extrapolating, conjecturing,
predicting, …

And having considered, before the lesson
begins, possible student responses and
how to encourage further evolution of
their thinking within the ensuing lesson.
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Characteristics of teachers’ classroom practice involving CAS
technology that relate to drawing out the conceptual aspects
of technical work in algebra: --

Consideration of ways to incorporate
additional artifacts and the roles they
might play:

This includes worksheets, paper and pencil,
blackboard (or the equivalent), …
The roles of these other artifacts include:

Guiding the work of the pupils and structuring their
explorations (worksheets)
Focusing the attention of students (blackboard)
Leading to a convergence of ideas (blackboard)
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Effective teaching practice with CAS would
appear to include planning that takes into
account at the very least the following:
1. Starting with a key mathematical idea.
2. Thinking about both the technical and theoretical aspects

of the key idea.
3. Trying out some technical examples on the CAS to see

how best to take advantage of the technology (does it
produce any surprises that could be integrated into an
interesting sequence?)

4. Deciding what role the technological artifact will play
(generate examples, create surprises, serve as
calculation assistant, …)

5. Deciding on the epistemological processes to be engaged
(pattern matching and generalization, conjecturing,
seeking connections between representations, resolving
cognitive conflict, predicting, …)

6. Reflecting on how to draw out effectively within class
discussions the mathematical-technological links.
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However, our research so far suggests that
the one aspect of teacher’s practice in CAS
environments that seems to be key to
students’ becoming aware of the
conceptual aspects of their technical work
in algebra is:

Orchestrating classroom discussion in
such a way as to draw out students’
thinking regarding the mathematics of
the task at hand, by asking for their
conjectures, their observations, their
elaborations, and their justifications.
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This particular discursive aspect of teacher
orchestration, within CAS technology
environments, and in the context of
taskstasks that

go beyond merely asking technique-oriented
questions and which
call upon mathematical processes that include:
observing/focusing, predicting, reflecting,
verifying, explaining, conjecturing, justifying,
and which
require at times that students coordinate CAS
techniques with paper-and-pencil techniques, in
addition to
seeking consistency between surprising CAS
outputs and existing theoretical notions,

has been found to be pivotal to making
algebraic techniques more meaningful.
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Thank you

Muchas gracias
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