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In this paper we describe a high-school student’s difficulties in understanding the 
notation for a general polynomial: 

! 

x
n"1

+ x
n"2

+ ...+ x +1 during a CAS-based activity to 
develop a general factorization for 

! 

x
n

"1. We illustrate how he attributes a meaning 
to the ellipsis symbol related to his experience of “terms cancelling out” rather than 
the taken-for-granted meaning of an undefined continuing process. We show his 
associated difficulties in making sense of the sequence of decreasing exponents. 
Finally, emerging from his misunderstandings, we describe his motivation to find a 
general formula for 

! 

x
n

+1, testing his conjectures using the CAS. 

INTRODUCTION 
In this paper we describe the story of a 15-year-old high-school student, Bryan, 
working on a CAS-based algebra activity: we show some of the issues that arose in 
terms of language and communication difficulties, and how he used the tool in his 
quest for meaning and to generate and test conjectures. We are interested in narrating 
Bryan’s story and the evolution of his thinking process, for two reasons. First, it 
highlights possible language and communication problems in a classroom: the 
difficulties that students may face when encountering, for the first time, conventional 
symbols (that can be taken for granted by teachers) and general algebraic notations, 
and the “cross-talk” that can happen between teachers and students. There are 
conventions which we take for granted and we do not realize might be a problem for 
students. In this particular case, general expressions of polynomials using the ellipsis 
(‘…’) notation were a source of difficulties. Language and communication in the 
mathematics classroom and the use of symbols have been extensively studied (e.g., 
Pimm, 1987, who does address the issue of symbols from common writing systems 
that are used in mathematics with perhaps different conventional meaning), but 
nowhere in the current research literature could we find a discussion or case related to 
the ellipsis notation. Second, the story narrated here, is one that took place in a CAS-
based activity using TI-92 Plus calculators. What is thus also interesting is how, in 
face of his confusions, the student was motivated to make use of the tool and test a 
conjecture that arose from his misunderstanding. 

                                                
1 This article appears in J. Novotná, H. Moraová, M. Krátká, & N. Stehliková (Eds.), Proceedings 
of 30th PME (Vol. 5, pp. 1-8). Prague, Czech Republic, 2006. 



THE STUDY 
This report emanates from an ongoing research study whose central objective is the 
shedding of further light on the co-emergence of technique and theory (e.g., Artigue, 
2002) within the CAS-based symbol manipulation activity of secondary school 
algebra students. Several sets of activities that aimed at supporting this co-emergence 
were developed by members of the research team2. Six 10th grade classes were 
involved in the study. All of their classroom-based CAS activity was videotaped; and 
digital records were made of all the student worksheets. The results presented here 
focus on a selected aspect of the analysis from one of the activity sets (see Kieran & 
Saldanha, 2006; see, as well, a companion research report relating to the same study, 
but presenting a different component of the analysis).   
The Factoring Activity 
The factoring activity (inspired by an example developed by Mounier & Aldon, 1996, 
and described by Lagrange, 2000) had as objectives to establish connections between 
notions that students already knew regarding the difference of squares and the sum 
and difference of cubes:  

! 

x
2

"1= x "1( ) x +1( ) ;  

! 

x
3

"1= x "1( ) x
2

+ x +1( )  ;  

! 

x
3

+1 = x +1( ) x
2

" x +1( ), 
and the general factorization for 

! 

x
n

"1 given by: 

  

! 

x
n

"1 = x "1( ) x
n"1

+ x
n" 2

+K + x
2

+ x +1( ). 

We designed a worksheet with a sequence of tasks for this activity, alternating with 
reflection questions and whole-class discussion periods. In many of those tasks, 
students were asked to factorize particular cases of the type 

! 

x
n

"1 first using paper-
and-pencil, then the calculator, and then to show how the paper-and-pencil and the 
CAS results could be reconciled.  

BRYAN’S STORY 
During the factoring activity, the students had been working on factoring the cases: 

! 

x
2

"1; 

! 

x
3

"1; 

! 

x
4

"1. It was intended that they begin to see a general pattern that they 
might not have noticed when initially learning to factor a difference of squares and a 
difference of cubes. This was followed by a question (see Figure 1), a class 
discussion, and predicting the factorization of 

! 

x
5
"1. During the class discussion, the 

teacher showed on the whiteboard that when factoring each of the above expressions, 
the product of the factors would make all the middle terms “cancel out”: for example, 
for 

! 

x
2

"1: . Also in this discussion, when the teacher asked 

                                                
2 The members of the research team who are involved in the Algebra in Partnership with 
Technology (APT) project include: André Boileau, José Guzman, Fernando Hitt, Carolyn Kieran, 
Luis Saldanha (now at Portland State University), and Denis Tanguay. Paul Drijvers collaborated 
with the team as a Visiting Researcher during the Autumn 2005 session; as did Ana Isabel Sacristán 
during a part of the Spring 2005 session. 



who could say something about all those expressions, it was Bryan who remarked 
that 

! 

x "1 was a factor in all of them. Bryan was a student who participated and 
contributed very often in the class activities (at least in the CAS-based activities we 
observed) and always asked the teacher or classmates when he did not understand 
something. But he was also a bit of an attention-seeker; this caused him to not always 
be taken seriously by his classmates and the teacher, despite sincere doubts and smart 
conjectures. 

  
Figure 1: Bryan’s answer to question 2d – “because the middle terms  

always cancel out in this case which creates binomials”. 

Towards a Generalization and the Introduction of New Symbols: The Problem 
of the Ellipsis  
The question that followed was: “Explain why the product 

! 

(x "1)(x
15

+ x
14

+ x
13

+ ...+ x
2
+ x +1)  gives the result 

! 

x
16
"1?” Here, Bryan’s difficulties 

began. He exclaimed: “The next [question] does not make any sense.” As we will see, 
Bryan did not understand the meaning of the ellipsis (“…”). The teacher, however, 
did not pay attention to what his confusion could be; he simply explained what the 
task question asked:  “The middle terms cancel out, like we said before, like the thing 
we did before. So the ‘minus one’ takes care of all the terms apart from the first one 
and the last one. So, we’re left with 

! 

x
16
"1”. So Bryan wrote that as his answer (see 

Figure 2). A similar question was given for 

! 

x
135
"1, and the reply was the same. As we 

will see, this repeated emphasis on the idea that “the middle terms cancel out” would 
have repercussions on the meanings created. 

 
Figure 2: Bryan’s answer to question 2f – “The middle terms all cancel out”. 

During the class discussion period that followed, the teacher introduced the general 
expression for 

! 

x
n

"1 (earlier than was expected in the design of the activity). With the 
input of some students, he wrote on the whiteboard:  

! 

(x
n

"1) = (x "1)(x
n"1

+ x
n" 2
...+ x +1) . However, several students were confused by the 

notation and asked what n meant; the teacher explained: “n means any integer, any 
positive integer.” While writing the expression, the teacher read for the ellipsis “plus 
‘dot dot dot’”. Bryan expressed his confusion on the meaning of this symbol:  



Bryan:  What are the dots? 
Teacher (not really answering Bryan): So it goes all the way to one [pointing to the 1 in 

the expression: 

! 

x
n"1

+ x
n"2
...+ x +1] Is that clear? We all see that? 

Bryan:  No, I do not understand. Why the dot, dot, dot? 
Teacher (not really answering Bryan): It is the same way we did for x to the 135 [for 

! 

x
135
"1]: you know that the middle terms are going to cancel out. […] 

Bryan:  What are the dots? Wouldn’t it all be the same if it’s 

! 

x
n"1 plus 1 [

! 

x
n"1

+1] 
except we have that middle term thing; wouldn’t that be the same thing?...  
If the first bracket is like 

! 

(x "1) , but the second bracket, instead of putting 
that middle term thing in there, you just do 

! 

x
n"1 plus 1 [

! 

x
n"1

+1].  
[The teacher wrote out what Bryan said: 

! 

(x "1)(x
n"1

+1) , then showed that the two 
expressions were not the same; but Bryan was not satisfied.] 

Teacher:  So those don’t cancel, do they?  
Bryan:  They should, though! 

All the emphasis in previous tasks on cases where the middle terms cancelled out, 
seems to have led Bryan to give this meaning – that the middle part cancels out -- to 
the ellipsis symbol (‘…’), which he did not understand. Thus the teacher and Bryan 
gave different meanings to the term ‘cancel’ and to the ellipsis, which, as we will 
show in the next sections, caused problems in the understanding of the algebraic 
notation. As Arzarello (1998, p. 259) points out:  

One of the main problems in teaching algebra (and most of mathematics) is a 
communication problem. The relationship between signs and their mathematical 
meanings may be confused for many students who attach only formal and procedural 
features to the former but who use the same words as their teachers, albeit with different 
meanings, for representing the situation.  

The teacher took for granted that the ellipsis symbol would be understood. In the 
history of mathematics, Cajori (1928/9, vol. II, pp. 59-60) reveals the following with 
respect to the use of general notation and the ellipsis symbol: 

L’Abbé de Gua [1741] writes a finite expression, marking the terms omitted, with [four] 
dots and also with “&c.”: “3,4,5

! 

....&c n-m+2”  
[with a bar over the n-m+2], the commas indicating here multiplication. F. Nicole [1743] 
writes a procession of factors, using dots, but omitting the “&c”. [text deleted] C.F. 
Hindenburg [1779] uses dots between, say, the fourth term and the nth term, the + or the 
– sign being prefixed to the last or nth term of the polynomial. [text deleted] E.G. Fischer 
[1794] writes a finite expression 

! 

y = ax + bx
2

+ cx
3

+ ....+ px
r  and, in the case of an infinite 

series of positive terms, he ends with “+etc.”.  

Cajori also adds that, “Descartes [1637] wrote 

! 

a
3 , 

! 

x
4 ; the extension of this to general 

exponents 

! 

a
n  was easy” (Cajori, 1928/9, Vol. 1, p. 360). However, it is not clear 

when general polynomial notation and the use of the ellipsis symbol became widely 
accepted or even standardized, for Euler (1797, Vol. II, p. 31) in his Elements of 
Algebra was still using notation, for general expressions, such as 



“

! 

a + bx + cy + dxx + exy + fx
3
+ gxxy + hx

4
+ kx

3
y +&c. = 0” in compound indeterminate 

equations at the end of the 1700s.  
However, when analysing our data, we realized that the ellipsis symbol is hardly ever 
defined. In dictionaries, the ellipsis is always described as something that is omitted 
or left-out; as a mathematical notation, in the online Wikipedia encyclopaedia 
(http://en.wikipedia.org/wiki/Ellipsis, retrieved 30 November, 2005) it does say that 
in mathematics the ellipsis is used to mean “so forth” to follow a pattern, but it is 
almost never defined in mathematics textbooks, even though it is used extensively, 
particularly for sequences and infinite processes. Even in books like Lakoff and 
Nuñez’s (2000) that extensively discuss infinite processes, and that also focus on the 
meaning and understanding of mathematics and mathematical symbols, we could not 
find a discussion of the ellipsis symbol, except referred to as “the common 
mathematical notation for infinity” (p. 180).  
So Bryan, when faced with this new symbol had to rely on the experience of the 
previous tasks, thus relating the ellipsis to the ‘disappearance’ of terms, something 
that is ‘cancelled out’, rather than a continuing process of existing terms that have to 
be omitted due to the generalization. As Pirie (1998) explains, the growth of 
mathematical understanding occurs through a process of folding back to earlier 
images to give insight to the building of new, more powerful ideas and that 
mathematical symbolism is open to interpretation only through the medium of verbal 
language, which relates the mathematics to the learner’s previously comprehended 
metaphors, where the rift between meaning and understanding can occur. This 
misinterpretation of the ellipsis symbol by Bryan would be a problem that would 
continue throughout the activity as shown below. 
On the other hand, it is interesting that this misinterpretation of the ellipsis symbol 
led Bryan to focus on the expression 

! 

x
k

+1. In parallel with trying to gain clarification 
on the meaning of the general notation

  

! 

x
n"1

+ x
n" 2

K + x +1( ), he began to explore 
expressions of the form 

! 

x
k

+1 on his CAS, as we will illustrate in the next sections. 

Further Symbology Difficulties: Making Sense of the Continuing Process 
Described by the Ellipsis and by the Sequence of Exponents in the General 
Expression  
Following Bryan’s exclamation that the expression 

! 

(x "1)(x
n"1

+1)  should cancel out, 
the teacher tried to explain what made the terms cancel out in the general expression  

! 

(x "1)(x
n"1

+ x
n"2
...+ x +1), but this just added to Bryan’s difficulties: 

Teacher:  For it to cancel, these need to go numerically with the powers decreasing 
each time. So that’s why you get 1… 

Bryan:  So if it’s decreasing, how far do you go? ‘Til…? 
Teacher:  You go all the way down. […] 
Bryan:  What if …, if it’s 

! 

x
n"1, then you do 

! 

x
n"2 , then you do 

! 

x
n"3 , how far down 

will you go? 
Teacher:  You go all the way ‘til you get to x to the zero, which is 1. 



Bryan:  Which is x to the n minus…? 
Teacher:  [n] minus n   
Bryan:  x to the n minus … but what do you get there, how do you know that? 

Bryan was now very confused by the decreasing exponents. He could not see how 
you could get to 1, to 

! 

x
n"n   — a difficulty which is of course related to the difficulty 

understanding the ellipsis: since for Bryan the meaning of the ellipsis was “cancels 
out”, and not a continuing process where something is simply omitted, he was unable 
to see the sequence of exponents. The teacher tried to explain with a numerical 
example; then went on to the next task. But Bryan remained very confused shaking 
his head; at one point he grabbed the calculator apparently to use it in his search for 
meaning and to test his claim that an expression containing 

! 

x
k

+1 as a factor should 
indeed ‘cancel out.’ 
While individual work continued on the tasks, Bryan called the teacher over. He felt 
he had found a case, 

! 

x
16
"1 = (x

8
"1)(x

8
+1), that could ‘prove’ his supposition:  

Bryan:  Sir? If its 

! 

x
16
"1, wouldn’t that be the same as 

! 

x
8

"1 brackets 

! 

x
8

+1, close 
brackets. So, what I said was, but it’s only if the term is….  

Teacher:  Ok, what you’ve said is going to be very useful to what we’re doing … 
You’re one step ahead as usual, eh? … [Then to the whole class]: Those 
of you who heard what Bryan just said, it is very relevant for a change.  

The teacher did not realize Bryan’s confusion. He only picked up the correct ideas in 
Bryan’s reasoning because he thought Bryan was applying the difference of squares 
method. But it seems that Bryan was trying to find a case not only where a term of 
the factored expression was of the form 

! 

x
k

+1, he wanted to go further than this. This 
became evident when the teacher later asked Bryan to show his method to the class 
for the case 

! 

x
4

"1. Bryan explained it as: “the power number, you could divide it or 
something”. While classmates suggested that this was a difference of squares, Bryan 
clearly was still engrossed with the 

! 

x
k

+1 form, because he kept suggesting to further 
factor the term “with the plus in the middle.”  
Later, a group discussion followed trying to answer (from another question on the 
worksheet), for what values of n the complete factorisation of 

! 

x
n

"1 would: (i) 
contain exactly two factors; (ii) contain more than two factors; (iii) include 

! 

(x +1) as a 
factor. When the teacher said: “So, you should have gone beyond the initial 
conjecture that it’s just 

! 

(x "1)(x
n"1

+ x
n"2
...),” Bryan exclaimed: “Sir, I don’t 

understand that”. Bryan was still obsessed with trying to understand the notation. He 
stepped up to the whiteboard; and asked  

Bryan:  “When you go: x minus 1 and then you continue on, right?, for a long 
time, trying to cancel them out, x minus 2, then you go x to the minus 3 
[but he wrote ‘

! 

n
"1

+ n
"2

+ n
"3 ’], how do you know when this [circling the 

last exponent] is zero? How do you know when it is zero?”  

Despite his language mistakes, he seemed to be asking when the sequence of 
exponents 

! 

n "1, 

! 

n " 2, 

! 

n " 3 in the expression 

! 

x
n"1

+ x
n"2

+ x
n" 3
... would become zero. 



Teacher:  “It depends on n. That is just how you write it”.  
Bryan  “But… When you go like this [writing an ellipsis] all the time?”   

The teacher simply assented with a yes, misunderstanding Bryan’s question; Bryan 
gave up asking, though he was still confused and kept shaking his head. Clearly he 
still did not understand the ellipsis notation or how the sequence of powers is defined. 
The next session, the teacher began by re-writing on the board the general formula  

! 

(x
n

"1) = (x "1)(x
n"1

+ x
n" 2

+ ...+ x +1) ; Bryan immediately expressed his concern:  
Bryan:  I don’t like that. 
Teacher:  That’s right [referring to the formula], isn’t it Bryan? But you don’t like 

that, because? 
Bryan:  Because I don’t like the dots. I don’t think it is a real answer” 
Teacher:  It’s a general situation. 

The Use of the Tool to Explore the Factorization of 

! 

x
k + 1  

The last task of the activity was to prove or explain why 

! 

x +1 is always a factor of 

! 

x
n

"1 for even values of n ≥ 2. For a while the students worked on their calculators, 
then they shared their ‘proofs’ in a group discussion. While a couple of students went 
to the board to explain their ‘proofs,’ Bryan was very restless. He desperately wanted 
to show what he had been working on.  
When invited to the board himself, he picked up the difference of squares method 
that he had used in the previous session. He wrote that, if n is even, 

! 

x
n

"1 = (x
n / 2
"1)(x

n / 2
+1). He asserted that the first factor would be able to be factored 

further like they had done in previous tasks, but his focus was on the second factor. 
He explained that 

! 

x
n

+1 for 

! 

n being 4, for example, would equal 

! 

(x +1)(x
3
" x

2
+ x "1) 

and would therefore have 

! 

x +1 as a factor. He said that he had tried it out and it 
worked. But some of his classmates and the teacher pointed out that that was not 
correct, and the teacher erased it. It was clear that Bryan had been trying to factor 
cases of the form 

! 

x
k

+1 on the calculator and had noticed that when it factored out, he 
would get a factor with alternating signs. His problem was that he picked the wrong 
example (n=4).  
Another student, who had been sitting beside Bryan during the previous class session, 
came forward to pick up the argument. He chose to illustrate the conjecture regarding 
alternating signs with the example 

! 

x
10

"1, which when fully factored yielded 

! 

(x "1)(x +1)(x
4

+ x
3

+ x
2

+ x +1)(x
4
" x

3
+ x

2
" x +1), thus showing indeed that 

! 

x
5
+1 = (x +1)(x

4
" x

3
+ x

2
" x +1), and that 

! 

x
k

+1 is refactorable for certain values of k. 

FINAL REMARKS 
In this paper we have illustrated some difficulties that can arise in understanding the 
general notation of polynomials of undefined degree. In the case of Bryan, there were 
two difficulties: a misunderstanding of the meaning for the ellipsis symbol (not 
discussed elsewhere in the literature) and difficulties in making sense of the general 



sequence of decreasing exponents. In the end, we do not know whether Bryan’s 
problems with the ellipsis notation were solved, but we did notice a marked 
improvement in the use of the general notation 

! 

(x
n / 2

"1)(x
n / 2

+1) , which we attribute to 
his explorations with the calculator. Berger (2004) has argued, that the meaning of a 
new mathematical sign that is presented to a student, evolves through communication 
and functional use of the sign in mathematical activities embedded in a social 
context; so we would expect that Bryan eventually will make sense of that symbol.  
On the other hand, it is very interesting how the support of the CAS calculator, in 
conjunction with the task questions and the group interactions, allowed Bryan and his 
classmate to work toward a new general expression that had not been foreseen: that, 
for n odd, 

! 

x
n

+1= (x +1)(x
n"1
" x

n"2
+ ..." x +1) . (Further discussion of the 

! 

x
n

+1 
conjecture is found in Kieran and Drijvers (2006).) We do not believe the motivation 
and ability to generate and explore this conjecture would have been possible without 
the support of the CAS.  
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