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ABSTRACT

There is a common intuitien
in computer science that programming
helps to develop good problem soclving
skills. Qur work has attempted to
isolate the specific factors in
programming which enhance mathematical
problem solving ability. We have Ffound
that 8 surprising number of college
students have difficulty with very simple
algebra word problems. However,
significantly more students are able to
solve these word problems correctly in
the context of writing computer progroms,
than in the context of simply writing an

among those

algebraic equation. We obtained similar
results in comparing the reading of
algebraic equations within computer
programs and the reading of algebraic
equations by themselves. Computer
programming apparently puts an emphasis
precisely on the active, procedural

semantics of equations that many students
lack.

Introduction

There is a8 common intuition among

in computer science education that
computer programming encourages the
development of good problem solving
Papert [19713 and the LOeo
project were early proponents of this
they developed a method to teach
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geometry by way of computer programming.
Underlying their view is a recognition of
the importance of "doing." of activity,
and of procedure. Educators from Dewey
to Piaget have emphasized that in order
to understand a concept students need Lo
take an active role

This pedagogical intuition needs to
be investigated empirically so that it
can be articulated more precisely. A
step in that direction has been made
recently by Howe, O0’Shea. and Plane

[19791 in a series of experiments based
on the following paradigm: a course in
mathematics is taught in the standard way
without incorporating computer
programming, and simultenecusly, the same

course is tavght with computer
programming. Students’ mastery of the
subject matter is then compared across
the two groups. In such experiments
there seems to be a consistent effect in
favor of incorporating computer
programming

The above woTtk might be
characterized as experiments on the
"macro” level; in contrast, the work

reported here has focussed on the "micrao”

level. That is, we have attempted to
develop topls which would enable us to
isolate specific, critical factors

This research was supported in part by

NSF érant SED78-22043 in the Joint
National Institute of
Education -~ National Science Foundation
Program of Research on Cognitive

Processes and the Structure of Knowledge
in Science and Mathematics,.

This research was also supported in part

by a grant from the U. S5 Army Research
Institute for the Behavioral and Sccial
Sciences, AR 8rant No.

DAHC-19-77-6-0012.
Any opinions, findings, conclusions or
recommendations expressed in this report
are those of the authors, and do not
necessarily reflect the views of the U &
Government.



Thus,
we
We

In

contributing to the above results.
rather than studying an entire course.,
have focussed on single problems.
shall present Tesults {section
concerning the surprisingly poor
performance of college students on two
ostensibly simple algebra word problems.
These results suggest several hypotheses.
One is that the errors resulted from the
students’ failure to give & procedural
interpretation to the algebraic equation.
A second set of experimental results
(section IV) provides significant, new
support for this hypothesis. Namely,
students do signficantly better on
certain algebra word problems when they
occur in a programming context, than when
the same problems occur in a traditional,

algebraic (non-programming) context. We
ge on to suggest several aspects of
programming which could account for the

way in which this activity fosters a more

active interpretation of algebra by
students. We conclude with a description
of future research which we hope will
further explicate the benefits of
programming.

11. Experiments with Word Praoblems in a

Iraditional Algebraic Setting

In a
Lochhead,

previous study, Clement,
and Monk [19791 uncovered two
ostensibly simple problems with which
students had great difficulty. In Table
1 we 1list the ¢two problems and the
performance results gathered from
administering them to a group 150
freshman students at a majgor state
university. Fully 37% missed the first
problem while 737 missed the second!
Even more disturbing is the fact that all
the students in this sample were
engineering majors. Difficulty with
algebraic manipuvlation did not seem
responsible for these results; almost
all students answered correctly problems
which tested for this skill [Clement,
Lochhead, Soloway 19791, Nor do we feel
that the students’ difficulty could be
explained by saying that <the problem
contained "tricky wording. " Evidence
against this view stems from the results
obtained on problems such as 3 in Table 1
{also given to engineering majors). Here
students are given a picture description
of the problem and asked ¢to write an
algebraic equation: this "non-language”

of

problem was missed by &687%Z of the
students. Finally., we note that
colleagues at two other colleges and
universities have tested similar groups
and obtained comparable results [Kaput
197%a, Monk 1979].
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The errors made on problems 1 and 2
were largely of one kind; in both cases
68% of the errors were "reversals": 68 =
P instead of 8§ = 6P and 4C = 58 instead
of 5C = 48. The consistency of these
error patterns argues against the idea
that such errors were caused simply by
carelessness. This idea is also
discounted by the fact that roughly half
the subjects were given the following
hint with both problems.

"Be careful: some students put
a number in the wrong place in
the equation. ”

This hint did not have a significant
effect; it was associated with an
increase in the vpercentage of corvrect

splutions by only 3% and 5% respectively.

111, Interpretation
Experiments

of Algebrs

How is it possible for students with
such weaknesses to survive high school
and college science courses? It appears
that these students have developed
special purpose translation algorithms
which work for many textbook problems,
but which do not involve anything that
could rTeasonably be called a semantic
understanding of algebra. Many wovrd
problems are constructed so that they cen
be solved through a trivial
word—-to—-symbol matching algorithm.
Others, such as physics problems, arve
given in @a highly restricted context,
where there are only twe or thyee
pretauvght equations to choose between.
This choice can be made either by picking
the one equation which contains all of
the given variables or through wunits
analysis. While these techniques may be
partially successful in many classroom
situations, they are too primitive and
unreliable to be trusted in any but the
most routine applications

In order to pursue the source of
these errors, we conducted audioc and
video—-taped interviews with 20 students
who were asked to think out loud as they
worked these and other related problems.
On the "Students and Professors " problem
we were able to identify two strategies
which 1led to the reversal error. In the
first, the student simply assumed that
the order or contiguity of key words in
the English language problem statement
mapped directly into the order of symbols
appearing in the algebraic equation. For
example, one student wrote 65 = P and
explained:

"HWell, the problem states it
right oféf: ‘6 times students. ’
So it will be six times S is
equal to professors. "



incorrect

In this type of strategy., the student about the semantics of the algebraic
to be wusing the syntax of the equation. For example, one subgject wrote
English problem statement ——— and not an ‘68 = 1P’ and explained:
understanding of the problem itself ——-
to base his/her translation "There’s six times as
Weaknesses in this tupe of students, which means it‘s six
translation strategy have students to one professor
previcusly been analyzed by Paige and this (points to 658) is six times
Simoni 1944]. as many students as there

professors (points to 1P). "
the other hand. in a8 second

Problem 1:

Write an equation using the variables S8 and P to represent the
following statement: "There are six times as many students as
professors at this University.” Use § For the number of students and
P for the number of professors

Sample Size % Correct % Incorrect

150 &3 7
Problem 2:

Write an equation using the variables € and S to represent the
following statement: At Mindy’s restaurant. for every four people
who order cheesecake, there are five peaple who ordered strudel. " Let
C represent the number of cheesecakes and S represent the number of
strudels.

Sample Size % Correct % Incorrect

150 27 73

Problem 3:

Spies fly over the Norun Airplane Manufacturers and return with an
aerial photograph of the new planes in the yard.

They are fairly certain that they have photographed a representative
sample of one week’s production. Write an equation using the letters
R and B that describes the relationship between the number of red
airplanes and the number of blue planes produced. The equation should
allow you to calculate the number of blue planes produced in a month
if you know the number of red planes produced in a month.

Sample Size % Correct % Incorrect

34 32 &8

Table 1

strategy, students acted as if When asked to draw a picture to

did utilize an accurate illustrate his equation, the student drew
representation of the meaning of the from right to left one circle with a ‘P’
However, reversal erTors in it. an equal sign, and six circles

to arise because of confusion with "8’s” in them. Sub jects such as the



above seem to use an accurate model of
the practical situation, but they still
fail to symbolize that understanding with
the correct equation.

Apparently such subjects interpret
the reversed equation, ‘68 = P*, &s
stating that a large group of students
are associated with a small group of

professors. To these students the letter
"P" stands for "a professor" rather than
“the number of professors" and the equal
sign expresses a comparison or
association rather than an eguivalence.
The fact that the "§" side of the
equation has a "6" on it indicates that
it is larger than the "P" side which has
no modifier. Thus, there appear to be
more S’s than there are P’‘s. Thus the
student attempts to write the algebraic
equation ‘eE = PO as a "figurative"
statement, describing a passive picture
in which relative sizes of the entities
are represented.

This contrasts to the
equation ‘8 = &6P', which needs to be
viewed as expressing an active operation
being performed on one number (the number
of professors) in order to obtain another
number (the number of students). The
correct equation, 8 = &P, does niot
describe sizes of the groups in a literal

correct

or direct manner. Rather, it describes
an equivalence relation that would octur
it one were to make the group of
professors six times larger. In other
words, the equation 8 = 6P is not a
direct description of the actval
situtation, but rather, it represents the

hypothetical state of affairs which would
result after performing the operation of
multiplying the current number of
professors by 6. While some students
find the correct equation through trial
and error by writing the reversed
equation ¢irst and then plugging in
numbers as a check, our analysis of
protocols from successful solutions
indicates that the key to fully
understanding the correct translation
lies in viewing the number six as an
cperator which transforms the pnumbew of
professors into the pumber of students.
One subject who correctly wrote 8 = &P
said:

"I1¢ you want to even out the
number of students toc the number

of professors, you’d have to

have six times as many

professors. "
The equation is thus interpreted in &
procedural manner as an instruction to
act.

In the above analysis, a comparison

was made between two ways of viewing
equations. While the distinction may be
subtle, it is nonetheless critical. We
stress this issue, since. as
mathematically literate adults, it is
difficult to imagine not viewing an
equation as specifying operations on
variable quantities. Nonetheless., our
interview data suggest that this
viewpoint is abstract and elusive For
many students.
1Y, Computer Programs VS, Algebrasic
Equations: Experimental Results

On the basis of the foregoing
analysis, we developed the following
hypothesis: if students were placed in
an environment which could induce them to
take a more active, procedural view of
equations, then the error rate on these
problems should go down. One clear
candidate for such an environment is that
of computer programming. That is, o
computer program is a definite
prescription for action; it is a set of
commands which produces some Ttesulti
Below, we present empirical tests of this

hypothesis; in the next section we shall
present our analysis of these results

Experiment 1

In this experiment. our subjects
were 17 professional engineers, with 10
to 30 years experience, who were taking &
one week intensive course on the BASIC
programming language. At the beginning
of the #irst day of the course, before
any instruction had begun on BABIC, they
were asked to solve problem 1 in Table 2.
We were suprised to find that 474 of
these practicing engineers missed this
problem! On the second day of the
course, after the students had written
and T™UN programs using assignment
statments, conditional statements, and
for-next loops, and without any
discussion of the answers to the above
questions, the students were asked to
solve problem 2 in Table 2. All subjects
answered this question correctly using
the statement LET B = (11#H)/6 {(or some
variant) in their program. Note that the
form of this statement is equivalent to
that of the correct answer to the Ffirst
equation. Although this result could
conceivably have been due to & ‘"practice
effect” from having done the previous
problem, we strongly suspect that such sn
effect alone could not be responsible For
so large a jump in performance.




Experiment 2

In this experiment. our subjects
were primarily freshmen and sophomores in
a course on machine and assembly language
programming. This time, however, hazlf
the class was given problem ! in Table J
while the other half was simultaneously
given problem 2 in Table 3. The only
difference in the guestions is that the

latter asks for a computer program while
the former asks for an algebraic
equation. As indicated in Table 3
significantly more students could solve
problem 1 than could solve problem 2.
Probability of these results on the
assumption that errors on each problem

were equally likely is p < .05

Experiment 3

The above 2 experiments explored the

writing of computer programs or
equations. However, in the study
mentioned earlier, (lement, Lochhead and
Monk [19791] observed that reading
equations also gave students a great deal
of trouble. That is, many students
failed to write a correct explanation of

the relationship expressed by the
equation. Following the hypothesis
outlined above, we wanted to compare the
results of students reading and
explaining an equation, which WES
embedded in a computer program with
students Tteading and explaining an
equation, which stood alone. The two
questions in Table 4 were given as part
of an 11 question test to 87, mostly
freshman, engineering students. The
difference between the groups which
answered one correctly but the other
incorrectly is quite interesting.
Namely, the group of students who
answered the computer problem correctly
(problem 2. Table 4), but the equation
problem incorrectly (problem 1, Table 4)
was more than 3 times as large as the
group who answered the equation problem
correctly, but missed the computer
problem. This difference is significant
at the .005 level. Here agsin., we see
that the programming environment
facilitated the students’ understanding.

Problem 1:

Given the following statement:

"At the last football game;

Write an equation which represents the above statement.
who bought sandwiches.,

number of people
who bought hamburgers
Sample Size

17 53

Problem 2:
Siven the following statement:

"At the last company cocktail pa
hard ligquour,

Write a computer program in BASIC which will

% Correct

rty.,

for
there were 11 people who drank beer. "

for every 4 people who bought sandwiches,
there were 5 who bought hamburgers. ®

Use 8§ for the
and H for number of people

% Incorrect

a7

every & people who drank

output the number of

beer drinkers when supplied {(via user input at the terminal) with the

number of hard liquour drinkers.
drank hard liquovur,

Sample Size % Corr

17 100

Use H for the number of
and B for the numbey of people who drank beer.

ect

Table ¢

4 71

peocple who

% lncorrect

(v}



Problem 1:

Given the following statement:

"At the last company cocktail party, fov every 6 people who drank
hard liquour, there were i1 people whe drank beer.”

Write a computer program in BASIC which will output the number of
beer drinkers when supplied {via user input at the terminal) with the
number of hard liquour drinkers. Use H for the number of people who
drank hard liquour, and B for the numbev of people who drank beer.

Sample Bize % Correct 4 Incorrect
52 &9 31
Problem 2

Given the following statement:

"At the last company cocktail party. for every & people who drank
hard liquour, there were 11 people who drank beer. "

Write an equation which represents the above statement. Use H for the
number of people who drank hard liguour, and B for the number of
people who drank beer.

Sample Size % Correct % Incorrect

51 45 11

Probability of these results on the assumption that errors on each
problem were equally likely is p < . 0O

Table 3

Problem 1:
Write a sentence in English that gives the same information as the
following equation:
A =78
A is the number of assemblers in a factory.
S is the number of solderers in a factory.
Problem 2:
Program Kayak
Input I
K=1gue2 For tpe ab?ve cqmputer program describe in English the mathematical
Print K relationship which exists between I, the number of Igloos, and K, the
End number of Kayaks.
Comparison gf Problem 1 snd Problem 2
a. Number of pecple who got 1 correct, but 2 incorrect 5
b. Number of people who got 2 correct. but 1 incorrect i8

Probability of these results on the assumption that case a and b were

equally likely is < . 005

Table 4



V. Why a Programming Context Decreases
Reversal Errors: Some Hypotheses

The range of experiments we have
carried out has provided us with
compelling evidence as to the positive

contribution of a programming environment

to certain types of problem solving.
These results are even more striking when
one realizes that, a8 priori, one would
think that writing a computer program
would be more difficult than writing an
equation. We have formed several
hypotheses, any number of which could
explain why students could solve the
problems better in a programming
environment:

1. Unambiguous semantics of
programming language
constructions. While various
mathematical symbols (e.g., the
equals—sign) ere often open to a
variety of interpretations in
mathematics (see [Kaput 1979b1),
programming languages require
that only one interpretation be
associated with each symbol.
This fact is uvsually emphasized
in programming language
instruction. For example, the
meaning of ’‘=' in ‘I =1 + 1* is
explicitly defined as an act of

replacement, i.e., the value ot

the right side of the equation
becomes the new value of the
variable on the left. Also, the
interpretation of wvariables is
clear, i.e., they stand for
numbers which are acted on by
operators.

2. Explicitness required by the

syntax of programming lanousges.

The fact that one must write
'6#5%  rather than simply ‘65"
might serve to prompt one to

view that expression operatively
as meaning "six times the number
of students” rather than falling
into the error of viewing it
descriptively as "six students"”.

3. Viewing an “eguatign” in a
proaramming language as an
active input/output
transformation. That 1is, the
right hand side of the equation
{the input) 1is gperated on to
produce a value for the left

hand side (the ocutput).

4. The practice of debuqgging
programs. While students may
not be encouraged to "“run their
equations® in typical
mathematics courses, this

concept of actual number testing

is an integral part of
programming and programming
education.

9. The practice of de osin a
problem into explicit steps. A
number of students solved <the
computer program problem by

writing down a two step sequence
of operations.,

X = B/6

B = t1xX
One interpretation for this
phemenon might be that students

"saw” partial results "produced”
on the way to the solution.

VI. Coencluding Remarks

The empirical evidence described
herein is in general agreement with that
cbtained by the “macro” study cited
earlier. However:. our Tresearch method
has allowed us to develop specific
hypotheses concerning factors in a
programing language which contribute ¢to
improved problem solving. Currently, we
are continuing to video-tape students as
they solve problems., and hope to
establish exactly which aspects of
programming are most important to
overcoming the Teversal error. Our

preliminary clinical results in this area
point to factors 1,2 and 3 above as the
most important. but further clinical data
is required to confirm this observation.
In summary. results from written
tests and clinical interviews have shouwn
that many science oriented college
students have serious difficulty with the
semantics of algebraic notation ~—— a
difficulty in learning to view equations
as active operations on variable
quantities rather than as statements
which describe a static scene. Perhape
this is not so surpising, considering the
strong emphasis in secondary schools on
equation manipulation in word problems.
Symbol manipulation Tules can
theoretically be learned in school as
"legal” patterns of 1letter movements
without any semantic underpinning.
Computer programming. however, puts a
natural emphasis precisely on the active,
procedural semantics of equations that so



many students apparently 1lack. Thus,
while our current results must be viewed
as preliminary, they directly suggest
that it would be beneficial to
incorporate computer programming into
high school algebra courses, and:. we
suspect, into other mathematics courses
as well.
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