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ABSTRACT. This paper, prepared for the survey lecture of theme group T2 at the Sixth 
International Congress on Mathematical Education in Budapest, gives an overview and 
analysis of recent progress in applying electronic information technology to creation .of new 
environments for intellectual work in mathematics. The paper is divided into six major 
sections considering the impact of: 1. Numerical computation; 2. Graphic computation; 3. 
Symbolic computation; 4. Multiple Representations of Information; 5. Programming and 
Connections of Computer Science and Mathematics Curricula; 6. Artificial Intelligence and 
Machine Tutors. 

One of  the most important tasks in mathematics education today is the 
revision of curricula and teaching methods to take advantage of  electronic 
information technology. Developments in this decade alone have presented 
us with inexpensive and powerful hardware and software tools that chal- 
lenge every traditional assumption about what we should teach, how we 

should teach, and what students can learn. This paper, prepared for the 
survey lecture of  theme group T2 at the Sixth International Congress on 

Mathematical Education in Budapest, gives an overview and analysis of 
recent progress toward realization of  the stunning promise in these new 
environments for intellectual work. 

There is no shortage of  speculative writing on the promise of revolution 
in school mathematics following from application of  various calculating 
and computing tools to teaching, learning, and problem solving. Since 
ICME V in Adelaide, there has been a profusion of conference reports and 
position papers outlining potential technology-based innovations (for ex- 
ample, School  Mathemat ics ,  N e w  Ideas with Computers,  1987). An exciting 
array of  experimental projects have begun demonstrating the prospects for 
mathematics classrooms that use calculators, computers, and videodisks to 
change the goals of curricula and longstanding patterns of teacher/student 
interaction. 

The reports of  ICME V itself (Mohyla, 1985) include hints of  nearly 
every proposal and project reported since 1984. However, it is very difficult 
to determine the real impact of those ideas and development projects in the 
daily life of  mathematics classrooms, and there is very little solid research 
evidence validating the nearly boundless optimism of technophiles in our 
field. In preparing this survey paper, I scanned a broad sample of  published 
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work in the theme area, consulted with knowledgeable individuals from all 
over the world, and sifted through the proposals and papers from speakers 
in our theme group sessions at the Budapest Congress. It is clear that in 
every country and region there are many mathematics educators actively 
exploring technology prospects. However, it is also clear that a comprehen- 
sive and up-to-date description of such a vast and fluid field is really 
impossible. Much of the most exciting work is in progress, not yet in 
published journal articles or books, and the hardware/software environ- 
ments available for such experiments are constantly improving. In the face 
of these conditions I have chosen not to attempt a true international 
survey, but to discuss the major problem/opportunity areas and to give 
illustrations of some of the most informative or thought-provoking work in 
each. 

There are several possible ways to impose order on the array of technol- 
ogy-motivated ideas in mathematics education today. One is to look at the 
major tasks involved in school mathematics - selection of content and 
process goals, organization of teaching/learning environments, and assess- 
ment of achievement - and to describe the impact of technology on each. 
There are many suggestions and active development projects working on 
each of these dimensions of the problem. 

1. Content/Process Goals - The most prominent technology-motivated 
suggestions for change in content/process goals focus on decreasing 
attention to those aspects of mathematical work that are readily done by 
machines and increasing emphasis on the conceptual thinking and 
planning required in any tool environment (Bjork and Brolin [4]; Brolin 
and Greger, 1987; Corbitt, 1985; Cornu [8]; Fey, 1984). 

Another family of content/process recommendations focus on ways to 
enhance and extend the current curriculum to mathematical ideas and 
applications of greater complexity than those accessible to most students 
via traditional methods (Fey, 1989; Roberts and Barclay, in press; 
Tinker [22]). 

2. Teaching/Learning Styles - Many mathematics educators have looked 
at the new information processing tools and envisioned striking change 
in traditional teaching-learning patterns of mathematics classes. They 
see teachers shifting their roles from expositor and drill-master to 
tasksetter, counselor, information resource, manager, explainer, and 
fellow student, while students engage in considerably more self-directed 
exploratory learning activity (Fraser, 1986; Fraser et al. [ 13]; Klep [16]; 
Schoenfeld, 1988). 
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The most common strategy for creating these new kinds of teaching/ 
learning interactions is provision of some sort of computer microworld. 
In such a microworld mathematical or real world objects, relations, and 
operations are represented electronically in ways that permit controlled 
exploratory manipulation and observation of properties by learners 
searching to abstract underlying mathematical principles. 

Unfortunately, while there is a certain naive logic to sorting ideas by 
focus on content or pedagogy, very few proposals or projects can be easily 
categorized in this way. Nearly every development program has an agenda 
of goals that imply changes in both content and pedagogy of school and 
university mathematics. To focus attention on technology prospects and the 
implications of those prospects for school mathematics, I have chosen to 
approach the survey task by looking at the different things that calculators 
and computers can do and to analyze the implications of each for both 
content and pedagogy in mathematics. Thus the paper is divided into six 
major sections considering the impact of: 

1. Numerical computation 
2. Graphic computation 
3. Symbolic computation 
4. Multiple Representations of Information 
5. Programming and Connections of Computer Science and Mathematics 

Curricula 
6. Artificial Intelligence and Machine Tutors 

Each section describes some typical or particularly interesting studies. But 
it is important to keep in mind that those examples are at best only a small 
sample of what is going on in this exciting arena today. 

N U M E R I C A L  C O M P U T A T I O N  A N D  M A T H E M A T I C S  E D U C A T I O N  

Development of modern digital computers was stimulated by important 
problems that could be solved effectively only with methods that involved 
extensive numerical/logical calculation. These numerical methods first influ- 
enced mathematics education as enhancements or alternative approaches in 
university courses like numerical analysis or linear algebra. But miniatur- 
ization of the computing technology led to a variety of personal numerical 
calculating tools that are now routinely available at low cost. This availa- 
bility of handheld scientific calculators has forced reconsideration of curric- 
ular objectives in every topic that involves numerical computation. 
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Calculators and Arithmetic 

The influence of calculators on objectives and teaching in arithmetic has 
been debated for nearly two decades. Proponents of calculator usage have 
seen great potential for shifting curricular emphasis from computational 
procedures to problem solving and to the mental arithmetic needed for 
estimation and checks on calculator results. However, skeptics have wor- 
ried that people will become dangerously dependent on technology and that 
they will lose skills and understandings that play important roles in more 
advanced mathematics. As a matter of practical school curriculum policy, 
this debate is far from over. In most elementary schools around the world, 
use of calculators for instruction " and testing is not routinely permitted. 
However, a growing body of research suggests that, when used wisely, 
calculators can enhance student conceptual understanding, problem solv- 
ing, and attitudes toward mathematics - without apparent harm to acqui- 
sition of traditional skills. Those are the conclusions reached in a 
meta-analysis of 79 studies by Hembree and Dessart (1986), in a series of 
studies reported by Brolin (1987), and in a 3-year study of several thousand 
students reported by Wynands (1984). In fact, for many researchers the 
question of Whether to allow calculator use seems to be settled in the 
affirmative and interest in such broad calculator studies has diminished. 
More typical of current research are studies that search for effective new 
ways to use calculators for instruction. For instance, Meissner (1987) has 
investigated the effects of calculator use on spontaneous development of 
student problem solving strategies. 

The many studies on effects of calculator use give confidence that the 
mere presence of calculators in school mathematics will not inevitably lead 
to damaging consequences. However, in almost all of those experiments the 
calculator was used to complement instruction in traditional arithmetic 
skills - including memory of basic arithmetic facts and performance of 
traditional paper-and-pencil algorithms for computation. What remains an 
open and very important problem is determining the consequences of more 
daring experiments in which students are taught to rely more heavily on 
calculator help with arithmetic calculation or even basic facts of addition, 
subtraction, multiplication and division. Some major development projects 
have begun construction of elementary curricula that have goals which are 
appropriate for students who will live in a world where calculators are 
nearly always available at negligible cost, but it is too early to tell whether 
those projects will really push the limits of reducing traditional computa- 
tion skill goals or what the effects of such changes might be. 
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Numerical Approaches to Algebra and Analysis 

The numerical assistance provided by calculators offers a clear and attrac- 
tive alternative to traditional paper-and-pencil skills wherever arithmetic 
computation is required- in elementary arithmetic, algebra, geometry, 
trigonometry, statistics, or calculus. What is less well appreciated is the role 
that ease of numerical computation can play in development of conceptual 
understanding in those advanced topics. The instructional power of numer- 
ical approaches to advanced mathematics is the theme in a series of 
development projects led by Leitzel, Osborne, Demana, Damarin, and 
Waits. They have focused attention on using a variety of numerical 
computation tools in helping students make the transition from arithmetic 
to algebraic reasoning. To establish solid intuitive understanding of vari- 
ables and functions, students work with calculators and a simple spread- 
sheet computer program to investigate relations among variables. The basic 
strategy is to emphasize the search for patterns in tables of values for 
related numerical variables as a first step toward formal algebraic expres- 
sion of such relationships. Research results suggest that this computation- 
rich transition to the abstractions of algebra is strikingly more effective than 
traditional approaches (Demana and Leitzel, 1988). Similar numerically- 
intensive approaches to calculus are also proving effective. 

Quantitative Complexity 

Application of computational tools to more advanced concepts of mathe- 
matics shows its clearest advantage in any situation that involves many 
interrelated variables or large sets of data. For instance, a variety of 
approaches have been developed for application of computing to work in 
linear algebra (Orzech, 1988). With tools available to perform basic matrix 
operations, it is quite reasonable to shift the focus of instruction from 
training in execution of the various algorithms to planning and interpreta- 
tion of those operations. The vector-oriented language APL has gotten 
special attention in this area, but there are now several higher-level utilities, 
like Matlab or muMath, available on microcomputers. Some people have 
also explored use of spreadsheets to organize and execute operations like 
Gaussian elimination. Standard spreadsheet row and column operations 
correspond easily to the needed matrix procedures. The value of using these 
matrix tools, in either "black box" or "user guided" models, is supported 
mostly by anecdotal evidence, and it seems clear that the problem of finding 
an appropriate balance between skills that must be acquired by each 
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student and skills for which students can rely on a machine is a crucial 
question, parallel to the questions about calculators and arithmetic. 

The second major area in which computing promises help dealing with 
computationally complex situations is data analysis and statistics. Access to 
computers allows students to work with interesting and realistic collections 
of numerical data. The statistics education community has been very active 
in exploiting this opportunity. There are computer networks giving users 
access to interesting data sets for instruction, there are many useful pieces 
of software available for basic data analysis procedures, and curriculum 
development projects are showing how to blend these information process- 
ing resources into instruction at all grade levels (Friel and Russell [14]; 
Scheaffer, 1987; Swets, Rubin, and Feurzeig, 1987). Perhaps because data 
analysis and statistics are not viewed as traditional skill-based strands in 
the curriculum, the debate over potential risks of computer use seems not 
to have been as sharp as in other topics. The appeal and promise of 
expansion in this general area seems immense. 

Discrete Numerical Methods 

In one sense the use of numerical methods in traditional areas of mathe- 
matics, like calculus, can be viewed as a process of making estimates on the 
way to or in lieu of exact results. However, there is now growing interest in 
reformulating problems traditionally treated by continuous variables and 
calculus in the language of discrete processes - principally difference 
equations. Such approaches offer hope of illuminating or avoiding the 
difficult concepts related to limits in continuous mathematics. They lead 
naturally to the computer solution methods that are used so often in 
practical work, and they reinforce important concepts of computer science 
like recursion. While it seems unlikely that the traditional approaches of 
analysis will be rejected soon in favor of computer-based finite difference 
methods, there is a vigorous interest in exploring the alternatives and there 
are likely to be interesting development projects in the years just ahead 
(Sandefur and Vogt, 1988; Winkelmann, 1984). 

Summary 

Calculator and computer aided numerical methods are standard tools of 
mathematical work at all levels. However, when it comes to decisions about 
their role in curriculum and teaching at the school level, there remains 
considerable controversy about their potential impact. Despite a variety of 
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research and development projects showing that access to numerical compu- 
tation tools enhances learning and extends problem solving power of most 
students, without obvious deleterious effects, tradition dictates that use of 
those tools is permitted only after students have acquired some measure of 
personal skill in the procedures that have been automated in the machines. 

Computer numerical tools like spreadsheets, vector and matrix opera- 
tors, and statistical data analysis utilities provide attractive opportunities to 
enrich teaching of concepts and to extend the reach of problem solving in 
secondary school and university mathematics topics. But, with the excep- 
tion of statistics, these tools seem to have made little significant impact on 
standard curricula. In fact, the use of computers for numerical investiga- 
tions of mathematical concepts seems recently to have been overshadowed 
by the attraction of dynamic color graphic displays representing the same 
ideas. However, there is a growing body of research showing that neglect of 
numerical investigations deprives students of an important perspective on 
many mathematical ideas. 

G R A P H I C  C O M P U T A T I O N  A N D  M A T H E M A T I C S  E D U C A T I O N  

The first uses of computers relied on their role as aids in numerical 
calculation, but the most appealing development in the past decade has 
been the use of computers as tools for creating and manipulating graphic 
images. When microcomputers made it possible to draw geometric shapes 
in two and three dimensions, to graph functions defined by algebraic rules, 
and to display diagrams consisting of user-defined icons, a whole new set of 
potential computerists were attracted to the machine. Students were fasci- 
nated by the dynamic graphic images of video games, and teachers saw the 
potential to give visual representations for abstract mathematical ideas. 
That promise is now being realized in a number of exciting develop- 
ment projects, but we are also discovering important limits to the initial 
enthusiasm. 

Drawing Tools for Geometry 

At the time of ICME V in Adelaide, there was tremendous enthusiasm for 
computer graphics in geometry - most centered on application of the turtle 
graphics mode in Logo. Turtle geometry continues to be an attractive 
vehicle for informal classroom development projects intended to enhance 
students' general reasoning abilities. However, there is also an emerging 
trend in Logo research toward studies that make more focused application 
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of Logo characteristics to teaching of specific mathematical concepts, 
principles, and reasoning abilities. 

In studies typical of this new trend: (1) Campbell (1987) found that even 
for very young children Logo explorations yielded significant payoffs in 
growth of student ability to estimate length; (2) Noss (1987) found that 
Logo experiences had significant effects in development of student intuitive 
understanding about angles; and (3) Clements (1987) found a variety of 
positive effects from Logo programming experiences. At the sessions of 
ICME V I a  variety of short presentations indicated other ways that the 
Turtle geometry mode of Logo can be used to good effect in helping 
students discover important principles of plane geometry. 

Extensions of turtle drawing to three dimensions have been developed by 
several investigators, with the hope that such dynamic explorations would 
have good effects on student abilities to interpret and construct planar 
representations of objects and motions in space. For instance, Cesar [7] is 
using a 3D-Turtle called the SEA-TURTLE to help students develop their 
perception and drawing of three dimensional figures. The SEA-TURTLE 
commands allow students to draw pieces of a solid figure in the plane and 
then to assemble them in space using commands like PITCH, BEND, 
ROLLRIGHT, and ROLLLEFT. This geometry tool is being used in 
teaching experiments which are assessed with measures of spatial intuition. 

The turtle geometry feature of Logo has been recommended for use at a 
variety of grade levels. It has been used mainly in primary and early 
secondary years as a microworld for exploration and discovery activities. 
However, while teachers praise the classroom environment and imaginative 
student products of those Logo experiences, turtle geometry seems yet to 
have gained widespread acceptance as a standard feature of the mathemat- 
ics curriculum in elementary or secondary schools. The dynamic differential 
geometry point of view that is at the heart of turtle programming has 
gained very little headway in shaping approaches to school geometry. In 
fact, the geometry microworlds that have gotten most attention at the 
secondary level are essentially electronic representations of the geometric 
constructions and measurements that students have done with paper-and- 
pencil for centuries. 

One of the best-known of these new geometry microworlds is the 
Geometric Supposer series (Yerushalmy and Houde, 1986; Schwartz 1987). 
The Supposer programs help students make and test conjectures about 
properties of basic geometric figures by simulating the sorts of drawings 
and measurements that a mathematician would make in the course of a 
search for patterns. For instance, in a typical session the student might ask 
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the computer to draw a triangle, to connect the midpoints of two sides, to 
measure the sides of the original triangle and the segments into which the 
midline divides two of those sides, to construct various ratios of the side 
measurements, and then to measure the various angles in the figure. To test 
the generality of any patterns noted, the user could ask the computer to 
repeat the sequence of procedures on several other triangles. This tool and 
the environment it creates have two principal objectives: To restore the act 
of discovery and conjecturing to a geometry course that has become a 
deadly routine of proving things that have been well known for centuries, 
and to facilitate inductive reasoning by making multiple tests of conjectures 
easy to execute. Reports from users of the Supposer are enthusiastic about 
its effects on classroom activity and on student beliefs about the nature of 
mathematics. Yerushalmy and Houde (1986, pp. 421-422) found that 

The pedagogy we used most closely resembles the teaching ordinarily found in science classes, 
where the primary focus is on the scientific process of collecting data, conjecturing, and finding 
counterexamples or generalizations . . . .  Students spent the majority of class time discussing 
and doing geometry rather than listening to a teacher talk about it. 

While it might be suggested that the operations described in Supposer 
sessions are really no more than what a careful student could do with 
paper-and-pencil and drawing tools, the fundamental difference is alloca- 
tion of student time. With this kind of computer assistance, the student 
spends nearly every minute of a session planning or reflecting on results of 
some construction. With no help in the drawing and measuring, nearly 
every minute would be consumed by those tasks alone. 

D a t a  

DE/BC = .5 
ADE/ABC = 1 
AED/ACB = 1 

A 

/--.. .  

1 D r a w  M Measure 
2 Label  S Scale change 
3 Erase R Repeat 

N New triangle 

Fig. 1. A typical Geometric Supposer screen display. 
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The Supposer family of programs were written for use on the Apple II 
series of computers which, while impressive for their time, have graphics 
limitations that constrain the tool well short of what geometry teachers could 
easily envision and hope for. In France, the Cabri project has produced a 
similar but apparently more flexible geometric exploration tool for use with 
Macintosh computers. Cabri-geometry permits construction, transforma- 
tion, and exploratory manipulation of most figures encountered in secondary 
mathematics. The central idea of the Cabri tool is that the user should be 
able at any time to modify the characteristics of any element of a figure and 
to see the resulting redrawn figure immediately. As with the Supposer, this 
encourages examination of many variations on a single theme with the goal 
of discovering invariant properties of all (Bellemain [3]). 

In another similar geometry microworld called GeoDraw (Bell, 1987), the 
student has similar help with traditional constructions and measurements, 
but the additional option of doing Turtle-style vector drawing, plane 
transformations (available, but in a very limited way on the Supposer), and 
coordinate-based studies as well. A fourth example of geometric tool 
software (Kramer, Hadas, and Hershkowitz, 1986) presents students with a 
menu of basic construction options from which they are to assemble the 
solutions to give construction problems. 

CREATIONS CONSTRUCTIONS 
segment def. par 2 points 
triangle def. par 3 points 
droite def. par 2 points 
cercle def. par 2 points 
milieu d'un bipoint 
mediatrice d'un bipoint 
intersection droite-droite 
droite parallele 
*droite orthogonal 

centre d'un cercle 
cerele circonsorit triangle 
intersection droite-cercle 
intersection cercle-cercle 

TRANSFORMATIONS DIVERS 

B c 

Fig. 2. A typical Cabri-Geometre screen display. 
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In reflecting on the potential impact of geometric software tools like 
these, Schwartz suggests that "the larger idea that underlies this program, 
i.e., that students can make their own mathematics and the microcomputers 
can help them to do so, can change the way mathematics is taught and 
learned at all levels" (1987, p. 635). Many who have studied and used the 
tools believe that he is right, but, like many other computer-motivated 
changes, implementation will require change in long-standing habits of 
teachers and in the expectations we have for outcomes of familiar courses 
of study. 

Throughout the discussion of computers and geometry, there tends to be 
a tacit acceptance of traditional outcomes for geometry instruction. The 
computer is seen as a potentially powerful aid for teaching and student 
exploration, but the question is seldom turned the other way around. Is it 
possibly the case that in order to provide students with the conceptual tools 
they need to interpret and construct computer graphic images in problem 
solving we will have to focus on different principles and methods in our 
mathematics courses? What about fractals or the variety of discrete graphs/ 
networks and other schematic diagrams that are now used as visual models 
of important systems, but are hardly decomposable into familiar euclidean 
figures and relations (Gaulin and Puchalska, 1987)? This seems to me a 
significant question that has not yet been addressed in any detail. 

Graphic Images of Quantitative Relations 

One of the most productive methods of mathematics is the representation, 
in coordinate graphs, of relations among quantitative variables. That is 
certainly one of the first applications that mathematicians try when they 
begin work with computers, and we all believe that such pictures of algebra 
ought to have very powerful effects on student understanding. Suggestions 
of ways to use such graphs have appeared in many places and the software 
tools available to facilitate graphing are really quite versatile and easy to 
use.  

Typical "function grapher" software allows the user to enter rules for 
one or more functions or relations, to choose domain and range for 
graphing, and then to watch as high resolution color graphs are plotted. To 
focus attention on a smaller or larger window into the graph, various 
changes of scale are easy to command. In some experimental software the 
user can vary parameters in the function rule and observe resulting 
transformations of the graph or, conversely, transform the graph by 
dragging it with a mouse and observe simultaneous changes in the function 
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X = - 8  
~ = - 8  

i I 
X=8 
Y=8 

Y = 3COS(X) - 2 

Y = 4SIN(X) + I 

Fig. 3. A typical screen display for computer function graphers. 

rule. In addition to the basic function graph itself, many programs will give 
a simultaneous plot of the derivative or integral. Software for three 
dimensional graphs of functions is not yet as well developed for microcom- 
puters, but as standard machine memories and processing speeds increase, 
this tool will become standard as well. In fact, the conventional two-dimen- 
sional graphing is already available on several handheld devices [Casio 
fx-7000 and HP-28S], offering the hope that such machine capability can be 
available to students at all times for mathematical work. 

In addition to the conventional graphs of functions with formal rules, 
science educators have devised laboratory interface hardware and software 
that permits real-time graphing of data from scientific experiments. Read- 
ings from temperature probes or light transducers can be translated directly 
into graphs of temperature, distance, velocity, or acceleration over time 
while users watch the experiment and the unfolding graph simultaneously 
(Tinker [22]). While the "real-time" aspect of this graphing software is 
especially attractive, it is, of course, possible to simulate such events with 
suitable programs. The Shell Centre's Eureka and Bottles programs, are 
among the best known of this software type (Fraser, 1986). 

In more advanced topics, computer graphics have been particularly 
popular enhancements to the study of differential equations. Several teams 
have produced software that displays direction fields for given differential 
equations and then traces particular solution graphs from given initial 
conditions (Danby, 1988; Artigue, Gautheron, and Sertenac [ 1]). 

Despite all the promise in these new dynamic graphic tools, it is 
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reasonable to ask how they are being used to change mathematics teaching 
and learning. First, nearly everyone hopes that ready access to such graphs 
will enrich student understanding of algebraic forms - giving visual images 
of symbolic information. Initial instructional applications of function 
graphers usually involve simply displaying series of graphs for related 
function rules to reveal the patterns associated with various rule types and 
the effects of parameters in each type. Next students are asked to construct 
rules for functions that fit given graphic patterns. The Green Globs 
program is among the best known and highly praised examples of this 
software (Dugdale, 1984, 1987). In the Globs game, students must use their 
knowledge of algebraic forms to construct rules for graphs that hit "globs" 
on the coordinate screen. Variations on this theme present a systematic 
approach to graphing via transformations of basic forms, using computer 
displays to demonstrate the effects of the various transformations (Bloom, 
Comber, and Cross, 1986), and Tall (1985) has developed a highly regarded 
graphic-oriented approach to calculus. All such graphing activities are 
reported to be popular and successful, but hard research data supporting 
the claims is very sparse. 

Much use of computer graphics has focused on using the computer to 
enhance understanding and skill in traditional mathematical topics. How- 
ever, there is a line of work exploiting the new graphic tools that proposes 
significant changes in emphasis and goals also. In conventional pre- 
computer mathematics curricula, a great deal of time is devoted to theory 
and technique for construction of graphs for algebraic expressions of 
various types. There is an implicit assumption that once the graphs are 
produced it is a simple matter to use the information they represent to 

iii  iiiiiiIiiiiiiiiii 
ii . . . . . . .  i / ' i i i i i i i i  

-1o  ,: 4- i,,-iiiiiliiiiio 

~'oux~ S]hot ) Y = - . 3 ~ - I  

Fig. 4. A typical Green Globs screen display. 
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answer a variety of questions equivalent to solving equations or inequali- 
ties, determining maxima or minima, and studying rates of change. Of 
course, now it is not really essential for students to be so clever in 
constructing graphs by hand. Furthermore, a series of probing investiga- 
tions have revealed that many students have a great deal of trouble 
interpreting the graphs that mathematicians use effectively, almost without 
thinking. This situation has led many mathematics educators to urge that 
the focus of graphing activity be shifted from construction to interpretation 
of graphs. Experiments with this theme have produced a number of very 
interesting effects. 

First, when computer-generated graphs become the focus of classroom 
discussion about mathematics there is a notable change in the roles and 
interactions of teachers and students. For many students, traditional 
mathematics is perceived to be a formal game played according to arbitrary 
rules - a contest between teacher and student in which the challenge is to 
figure out secrets that the teacher keeps hidden. When students see a live 
experiment produce a computer graph (and even manipulate the experi- 
mental conditions themselves) or when students see a function rule typed 
into the computer and the related graph emerge immediately, they are 
presented with powerful illustrations of mathematics as a source of models 
for real phenomena. Furthermore, the classroom becomes a setting for 
student and teacher collaboration in the attempt to make sense out of the 
mathematics that is displayed before them. 

The teacher role shifts from demonstration of "how to" produce a graph 
to explanations and questions of "what the graph is saying" about an 
algebraic expression or a situation it represents. Student tasks shift from 
plotting of points and drawing curves to writing explanations of key graph 
points or global features. In much the same way that numerical computa- 
tion tools give an opportunity to emphasize planning and interpretation of 
arithmetic operations for problem solving, the existence of computer 
graphic tools can be used to revise the balance between conceptual and 
procedural knowledge in mathematics or to create entirely new graphic- 
oriented presentations of traditional mathematical topics. Examples of the 
first such application are given by a variety of computer-oriented curricu- 
lum development projects. The second type of graphics-oriented curriculum 
change is illustrated by the work in West Germany leading to a course 
called "Elementary Analysis" in which the basic concepts of limits, differen- 
tiation, and integration are presented in a way that makes all definitions 
visualizable and most results can be discovered geometrically (Moeller 
[18]). 
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Nearly every mathematics teacher is impressed with the potential for 
enhancement of teaching and problem solving by use of computer graphics. 
However, we are now accumulating experiences in attempts to realize that 
potential, and much of that experience is raising cautions about extrava- 
gant promises of easy or dramatic progress in student understanding and 
skill. First, we are discovering that, when it comes to graphs, "beauty is in 
the eye of the beholder"; many students find it very difficult to develop skill 
in interpreting graphs (Goldenberg et al., 1988; Clement, 1985). Many 
students seem unable to resist the temptation to interpret graphs, like those 
showing projectile speed as a function of time, as concrete pictures of the 
physical situation which the function is modeling. For example, in a task 
asking students to sketch a graph of roller coaster speed over time, the most 
common response is a graph that simply copies the profile of the roller 
coaster track. Second, there are a number of pitfalls inherent in graphical 
computation that can lead students who have inadequate theoretical under- 
standing to very serious incorrect conceptions (Demana and Waits, 1988). 
For instance, unfortunate choice of scales can lead to very similar pictures 
of functions with very different rules (see Figure 6). This example raises a 
question parallel to the concepts/skills controversy surrounding use of 
numerical calculators - what is the proper balance between use of the 
computer graphic tools and formal mathematical instruction that includes 
production of the same graphics by hand? A recent study by Dreyfus and 
Eisenberg [9] makes a first step toward understanding aspects of this 
situation, but there are very important research questions remaining. 

SKETCH A (TIME, SPEED) GRAPH FOR THIS ROLLER COASTER 

SPEED l- ~ \ " 
f ~  

Fig. 5. A typical problem relating graphs to the events which they model. 

TIME 
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Fig. 6. Graphs of  x sin(I/x) and x sin(x) made to appear similar by unfortunate choice of  
scales (Demana and Waits, 1988). 

Summary 

Computer graphics have been one of the most exciting contributions to 
mathematics education in this decade. They offer enormous promise for 
enhancing student understanding of important mathematical ideas and for 
providing alternative visual methods in mathematical problem solving. 
However, realization of this promise will require very careful research and 
development projects to overcome some difficult teaching/learning problems. 

S Y M B O L I C  C O M P U T A T I O N  A N D  M A T H E M A T I C S  E D U C A T I O N  

Mathematics educators have long been aware that computers are very useful 
for manipulation and storage of numerical data. However, for many 
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of these same people the development of microcomputer programs that 
manipulate symbolic expressions according to the rules of algebra and 
calculus has been quite a surprise. Mathematicians have been using main- 
frame symbol manipulation programs for several decades, but muMath 
brought that power to 64K microcomputers in 1980, and there are now 
several other commercially available similar programs. Furthermore, the 
HP-28S computer/calculator makes a fairly impressive package of symbol 
manipulation programs available in a handheld device. 

The general characteristics of computer symbol manipulation (or com- 
puter algebra) software include algebraic transformations and solution 
of equations involving polynomial, rational, and algebraic expressions - 
including elementary transcendental functions; matrix operations; calcula- 
tion of derivatives and indefinite and definite integrals; calculation of 
power series expansions for given functions; summation of series; and 
solution of differential equations. In each case, the expressions involved 
can include numerical and/or literal parameters. The programs are gener- 
ally quite fast, and they can deal with nearly every situation appearing in 
secondary school and early university mathematics. While some early 
versions used rather crude display formats, current packages present the 
results in forms that are identical to those of standard mathematical 
notation. 

Since the symbol manipulation software has become available for micro- 
computers so recently, there is only a modest collection of research and 
development experiences with it. Proponents have speculated that there are 
at least three ways that its use could make significant impact on mathemat- 
ics education. First, it seems clear that the software power extends the 
complexity of algebraic expressions that can be effectively handled at any 
level of instruction. Second, with computer assistance on routine symbol 
manipulation it seems quite possible to reorient instruction to focus on the 
conceptual understanding and procedural planning that remain essential in 
mathematical problem solving. Third, in much the same way that the 
Geometric Supposer or Cabri-Geometry tools facilitate exploratory learn- 
ing, symbol manipulation utility programs can support rapid exploration of 
patterns in algebraic reasoning - leading to discovery of important general 
principles. 

At this time there is little more than anecdotal or limited research 
evidence that any of the envisioned payoffs will follow from use of symbol 
manipulation software in mathematics education. Studies by Heid (1984, 
1988), Palmiter (1986), and Judson (1988) have shown that use of symbol 
manipulation software in teaching calculus does permit greater emphasis 
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on concept development and problem solving and that this change of 
priorities pays off in greater student understanding and skill in those 
aspects of the subject. In the Heid study students were taught very little 
about the traditional symbol manipulation rules until the last several 
weeks of the half-year course. Nonetheless, subsequent limited training in 
procedures - based on deeper and more confident understanding of 
fundamental ideas - was sufficient to produce skill levels equal to those 
of students who had spent an entire course with instruction that stressed 
skill acquisition. 

In a study using muMath as a tool in elementary algebra Heid and 
Kunkle (1988) found that student problem solving abilities were enhanced 
by the new balance in use of instructional time. Similar results have been 
reported by Lesh (1985). Hosack (1988) reported a variety of informal 
studies using symbol manipulators in university mathematics courses, 
concluding that each use did indeed change the focus of student attention 
and emphasize the central ideas of each subject rather than procedural 
details. 

With symbol manipulation utilities now available on hardware nearly as 
convenient as handheld calculators, it seems quite possible that we could 
make significant improvements in student understanding and problem 
solving by decreasing the required agenda of algebraic manipulative skills. 
Of course, there is reasonable concern that diminished command of tradi- 
tional skills would have other damaging effects in advanced study. This is 
clearly an area of exciting opportunity, but very significant unanswered 
research questions. 

Use of computer symbol manipulation or computer algebra systems as 
tools for learning about symbol manipulation itself is an almost totally 
unstudied area. But imagine the discoveries that students could make if 
they could call on an algebraic assistant to test the effects of various 
operations on a planned series of example expressions. 

Summary 

Software for symbolic reasoning in various strands of the mathematics 
curriculum is now available in sophisticated and easy to use form on a 
variety of widely used machines. Its potential for reshaping the con- 
'tent and teaching of various topics has been outlined in speculative 
papers and some curriculum experiments. However, the promise and 
potential problems that may result from that use are largely unknown at 
this time. 
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COMPUTER BASED MULTIPLE REPRESENTATIONS IN MATHEMATICS 
EDUCATION 

The numerical, graphic, and symbol manipulation tools provided by com- 
puters each offer unique kinds of insight and power in mathematical 
teaching, learning, and problem solving. However, the feature of computers 
that has recently generated most excitement among mathematics educators 
is the ease of moving from one form of information representation to 
another as the user searches for conceptual understanding and problem 
solutions. When development projects make use of numerical or graphic 
data to teach about and solve problems involving variables and functions, 
they are really testing the hypothesis that multiple representations are 
helpful and that ability to translate an idea from one notation to another 
is an indicator of meaningful knowledge. 

Of course, promised benefits from use of multiple representations or 
embodiments are not new in mathematics education. Textbooks and lec- 
tures have always relied on graphs to illuminate the properties of algebraic 
expressions and functions in calculus. Several attractive computer programs 
for teaching elementary mathematics are really just simulations of activities 
originally designed for use with physical materials like Dienes blocks. There 
are, however, several ways in which computer-based representations of 
mathematical ideas are unique and especially promising as instructional 
and problem solving tools. 

First, computer representations of mathematical ideas and procedures 
can be made dynamic in ways that no text or chalkboard diagram can. 
Computer models of geometric transformations or of the changes in a 
function graph that correspond to parameter changes in a function rule do 
something that is very difficult to display otherwise. Second, the computer 
makes it possible to offer individual students an environment for work with 
representations that are flexible (like a set of Dienes blocks), but at the 
same time, constrained to give corrective feedback to each individual user 
whenever appropriate. As Fischer (in press) has noted 

The main difference between the mode of representation given by written symbols and by the 
computer is the last one's potentiality of performing operations by itself, whereas in the old 
mode humans had to act. 

Third, while some multiple embodiment computer programs might be 
viewed as poor simulations of more appropriate tactile activity, it has been 
suggested that this electronic representation plays a role in helping move 
students from concrete thinking about an idea or procedure to an ulti- 
mately more powerful abstract symbolic form. In this sense the computer 
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plays a role as a kind of intermediate abstraction. Fourth, the versatility of 
computer graphics has made it possible to give entirely new kinds of 
representations for mathematics - representations that can be created by 
each computer user to suit particular purposes. Finally, the machine 
accuracy of computer generated numerical, graphic, and symbolic represen- 
tations make those computer representations available as powerful new 
tools for actually solving problems - not simply serving as heuristic 
sketches or "guess-and-test" calculations to get started on the path to more 
serious or closed form solutions. Recent work has shown the promise and 
some of the problems in each of these features of computer multiple 
representations. 

Several of the programs described in earlier sections of this survey 
demonstrate the possibilities for dynamic multiple representations of math- 
ematics in microworld environments which give users the kind of con- 
strained flexibility that offers such promise. There are many others being 
tested all over the world. For instance, Klep and Gilissen [17] have 
designed a program to help students learn multiplication facts with the 
assistance of four models: jumps on a number line, m x n rectangular grids, 
bars like cuisenaire rods, and a set loop containing multiple copies of a 
given set. Students can move back and forth between models with ease, and 
the models are created in steps before the student's eyes. Lesh, Post, and 
Behr (1987) describe a similar model for representation of fraction concepts 
and facts, and Thompson [21] has created a Macintosh program in which 
students are invited to use the mouse to manipulate electronic Dienes 
blocks just as they might the actual materials. 

Extending this kind of multiple representation manipulative support to 
instruction in algebra, Zehavi [24] devised a game called "Maxmix". Based 
on the simple task of choosing an operation that will maximize the result 
of combining two given numbers, the program leads students in levels from 
simple numerical data to points in a coordinate plane to tasks that require 
simultaneous consideration of three inequalities in two variables. Taizi and 
Zehavi (1985) created a related game called "Conquer the Plane" and they 
have used it with Maxmix in studies designed to see what difficulties 
students might have in working across such multiple representations. Tirza 
and Hershkowitz [23] have yet a third variation on this theme of using 
computer software to demonstrate links between different representations 
of mathematical information. 

Each of the preceding examples involves use of the computer to present 
multiple embodiments of mathematical concepts and methods, where the 
representations are electronic versions of familiar instructional materials. 
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Fig. 7. A typical screen display f rom the Blocks microworld ( T h o m p s o n  [21]). 

There are other development projects, however, in which something like 
'creative iconography' is used to produce new kinds of representations. For 
instance, Feurzeig and his associates have experimented with use of a 
'marble bag microworld' in which simple algebraic expressions and opera- 
tions are represented symbolically, verbally, and iconically using marble 
bags for variables (Feurzeig, 1986; Roberts, Carter, Davis, and Feurzeig, 
1987). Again, the idea is to help students make the transition from concrete 
to abstract reasoning through experience in an iconic world of intermediate 
abstraction. 

Another very exciting example of representation by specially created 
computer graphic icons is the work by Tinker and Roberts (Tinker [22]; 
Roberts and Barclay, in press) in producing an integrated set of computer 
tools for modeling of dynamical systems. The system uses science labora- 
tory interface software to collect experimental data and a spreadsheet 
program to display the data in numerical and graphic form. But the central 
conceptual tool in the modeling process is a program called STELLA in 
which the user creates schematic diagrams by arranging computer icons for 
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Fig. 8. Multiple representations of data and a model using the Stella modelling software 
(Roberts and Barclay, in press). 

pipes, valves, and reservoirs to indicate rates of change and accumulation 
in systems that vary over time. Once the schematic is established and 
modeling data are entered, the computer solves the underlying differential 
equations and displays the behavior of the system. The fascinating aspect of 
this system is the way it supports user thought with a flexible graphic sketch 
pad. It shows the computer being used to enable students to think about 
and work effectively in situations of realistic complexity that would ordi- 
narily be considered inaccessible at their level of mathematical skill. 

The fact that Tinker and Roberts' modeling environment takes over 
much of the mathematical calculation, once a model is worked out by the 
user, illustrates another significant way in which computer based systems 
for multiple representation of mathematics are being applied. As Brolin and 
Greger (1987, p. 1) point out, 

With few exceptions, mathematical activities in school, high school, college, and at an 
introductory university level consist of symbol manipulation. 

(But) in the long run it will become impossible to continue to teach intelligent human beings 
the kind of skills which any dumb but adequately programmed computer can perform better 
and quicker. 

To create a new more realistic world of mathematics, they designed a 
'Mathematical Work Shop' that students could use for the routine tasks of 
problem solving so that their minds would be freed for those aspects of 
problem solving that require human intelligence. Brolin and Greger's Work 
Shop included programs for graphing, numerical tables, and solution of 
equation, inequality, and optimization problems. They then developed 
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Fig. 9. A typical screen display for multiple representation function tool software. 

curriculum materials that would focus student attention on the mathema- 
tization process, on choice of appropriate tools, and interpretation of 
computed results. Here the multiple representation environment is used as 
a problem solving tool, and in the process it has profound implications for 
change in the kind of knowledge students must acquire from mathematics 
instruction. There is promise that, using such an approach, students will be 
able, as with modeling tools like STELLA, to gain access to much more 
challenging problem solving material. But such approaches run counter to 
strong beliefs of many mathematics teachers that the kinds of conceptual 
understanding that are still important can develop only out of extensive 
preliminary experience with hand calculations and that mathematical meth- 
ods must be built on a sound foundation of logical derivation. 

The consequences of using computer tools to change the skills/concepts/ 
problem solving balance in mathematics curricula are probably the most 
important issue for research in technology applied to our field. There are 
some results beginning to appear that support the proposals for change. 
However, it is clear we have much to learn about most effective use of the 
computer tools and the new curricular organizations. We need to know 
more about the experiences which best develop student ability to move 
back and forth between representations (see, for example, Guin [15]; 
Dreyfus and Eisenberg [9]). And we also need further studies of effects 
from prototype curricula embodying the new style of mathematical work. 

Summary 

One of the brightest hopes for improvement in mathematics education by 
application of technology currently lies in the various applications of 
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computer-based multiple linked representations for mathematical ideas and 
methods. Research and development projects are beginning to explore new 
curricular and instructional approaches that exploit this machine capability 
in various ways. It is clear that fundamental changes in traditional methods 
of mathematical teaching and learning are possible. But it is also clear that 
capitalizing on the advantages and minimizing the difficulties will require a 
great deal of thoughtful research and development work. 

PROGRAMMING, INFORMATICS AND MATHEMATICS EDUCATION 

While computers are well known as powerful machines for numerical, 
graphic, symbolic, and logical operations, the unique feature that enables 
all the power is the fact that computers are machines that can be pro- 
grammed. In the first applications of computers to mathematics teaching 
and learning, students were almost always involved in writing programs. 
Other than the practical fact that in those early days any computer user had 
to write his or her own program to get a job done, programming activities 
were justified by the assumption that analyses required in writing a 
program would deepen student understanding of the underlying mathemat- 
ics. In the past decade both the practical reality of computer use and beliefs 
about virtues of programming have changed. Now it is most common for 
computer users of all sorts to use a variety of special purpose program tools 
that require little more than entry of specific data and choice of procedural 
options from menus written in natural language. Furthermore, the search 
for evidence that programming experience influences mathematical behav- 
ior has not produced consistent or striking results. As a consequence, study 
and debate focused on programming and mathematics education have 
diminished substantially in the 1980's. 

Some of the sharpest critical remarks about effects of programming have 
been directed at Logo, for which some dazzling initial promises were made 
(see example, Bender, 1987). But Papert (1987) replies that we should not 
ask only what Logo does to students, but what students can do with Logo. 
The technology theme group sessions at ICME VI revealed deep interest in 
Logo by mathematics educators from many different countries. Many 
investigators are still commited to exploring the broad potential of Logo 
for changing the mathematics learning environment and goals in funda- 
mental ways (see, for example, Noss, 1988). 

In a recent paper Blume and Schoen (1988) summarize the arguments 
suggesting that programming experience ought to have beneficial effects on 
mathematical problem solving abilities of students. They note that because 
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of the nature of programming 

We might expect programmers to (a) be more active and systematic in both the planning and 
the solution stages, (b) make more use of successive approximations to solutions, (c) make 
more use of variables and equations, and (d) be more likely to check for and correct errors 
in attempted solutions. 

However, they conclude that 

Despite the logical connection, however, studies to date have not provided strong evidence 
that programmers and nonprogrammers perform differently when solving mathematical 
problems. (p. 143) 

Research by Blume and Schoen themselves found some evidence that 
programmers were more likely to use systematic trial approaches in prob- 
lem solving and that they more frequently checked for and corrected errors 
in potential solutions. However, the other hypothesized behaviors were not 
observed more frequently among programmers than nonprogrammers. 

While the pattern of results reported by Blume and Schoen has damp- 
ened enthusiasm for coupling programming and mathematics instruction, it 
seems premature to close the books on this issue. What many researchers 
have failed to find is a broad transfer effect from general programming 
activities to general problem solving behaviors. Far transfer effects are 
notoriously hard to find in any kind of educational research, and very few 
studies of any kind in mathematics education manage to make significant 
change in student problem solving behavior. Thus, it seems quite possible 
that there are benefits from programming which we have not detected in 
our quest for dramatic effects on difficult teaching/learning tasks like 
problem solving. 

The ability to program a computer is an empowering skill that helps 
computer users reach beyond the constraints of packaged tool software. 
Furthermore, teaching of programming itself is a fairly new task in school, 
so it seems quite plausible that we don't yet know the most effective ways 
of teaching that skill, much less helping students make the connections 
between programming and mathematics. 

Recent research on programming effects seems to have turned to more 
targetted approaches to make programming activities in a variety of 
languages pay dividends in mathematics learning. Kowszun and Higgo 
(1986), Thomas (1987), Ayers et. al. (1988), DeGraeve (1987), Capuzzo 
Dolcetta et. al. [6] and many others have recently reported work that takes 
this direction. It may very well turn out that programming can play a very 
positive role in mathematics education, but we have not yet done a very 
good job of realizing that promise. 



262 JAMES T. FEY 

Of course, programming is only one aspect of the discipline of computer 
science or informatics. The debate over effects of programming on mathe- 
matical learning looks at the interplay of the two disciplines from only one 
direction. Engel (1983), Maurer (1983, 1984), Ralston (1985) and many 
others have pointed out that the crucial step in applying computation 
power to a problem is the design of a suitable algorithm to guide the 
information processing operations. Thus it is important for students of 
mathematics to learn effective algorithms for important mathematical 
problems and to develop a more general ability to create algorithmic 
solutions to novel problems. As a British conference report put the 
challenge, "The study of algorithms and procedures represents both an 
extension of mathematics and a new way to view the current school 
curriculum" (Kowszun and Higgo, 1986). Thus such debates as the value of 
programming to mathematics learning or the virtues of various program- 
ming languages obscure a more fundamental challenge - revising our 
approaches to mathematics so that we prepare our students to apply the 
algorithmic methods which are essential in the use of computers. 

The questions concerning programming and algorithmic methods in 
mathematics are really only specific dimensions of a broader problem - 
coordinating the school curricula in informatics and mathematics to the 
best advantage of each. While there has been some speculative discussion of 
how this might be accomplished (Ralston, 1985; Bottino, Forcheri, Fur- 
inghetti, and Molfino [5]), it stands right now as largely an unsolved 
problem. From the mathematical side we must decide which topics from 
discrete mathematics (logic, difference equations, induction/recursion, finite 
probability, etc.) should, because of their value to informatics education 
and to understanding of powerful computer methods in mathematics, be 
included in school and university curricula. At the present time discussion 
and curriculum experimentation seems focused on upper secondary and 
early university study and on the (quite possibly false) competition for 
curriculum priority between discrete and continuous mathematics. 

Summary 

It is natural to believe that acquisition of skill in computer programming 
will develop habits of mind that will be helpful in various aspects of 
learning and doing mathematics. While research has yet to find convincing 
evidence of any such broad transfer effects, there is active but more focused 
interest in finding ways to make this interplay effective. Development of 
mathematics curricula that emphasize algorithmic methods would serve 
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students well when they turn to computers for problem solving help, but 
thus far this emphasis on algorithmic methods seems not to have made 
major impact on school or university mathematics. 

ARTIFICIAL INTELLIGENCE, EXPERT SYSTEMS, AND TUTORS 

Each preceding section of this survey describes ways that electronic infor- 
mation technology influences mathematics education by providing tools to 
assist with mathematical procedures - arithmetic calculations, graphic 
displays, symbol manipulation, and execution of algorithmic processes. 
Availability of those mathematical tools suggests changes in the goals of 
school and university curricula and in traditional patterns of teaching/ 
learning activity. But one of the very active dimensions of informatics 
research is exploring ways that computers can be programmed to exhibit 
'behavior' that simulates human information processing. There are a 
number of projects in mathematics education that are attempting to 
capitalize on this computer capability to design programs that act, in 
various ways, like teachers. 

The initial efforts to educate computers as teachers were of two main 
types. The first were variations on the electronic flash card theme - drill 
and practice programs in which the computer posed the problems and gave 
students immediate feedback on their performance. These programs are still 
very popular in schools and, for the purpose of sharpening necessary skills, 
they are apparently successful. We are beginning to see an array of 
programs that provide drill and practice in very clever settings and that 
provoke higher level strategic thinking as well as routines. There are 
impressive examples in the work of the Shell Centre, Dugdale and Kibbey, 
and Taizi and Zehavi - to mention only three sources. 

The second way in which computers have been used to simulate teaching 
is as an electronic medium for programmed instruction. In the quest for a 
computer-based course that could operate independent of any teacher or 
textbook, developers have often translated programmed text to the com- 
puter screen, devoting considerable energy to the problem of teaching the 
computer to respond to student entries in intelligent ways. As with drill 
and practice, there are examples of such programmed electronic courses 
still in use and still being developed. But it seems fair to say that interest 
has largely shifted from 'stand-alone' instructional systems that deliver, 
assess, and manage all aspects of education to development of more 
focused uses for computer tutors as only part of the teaching/learning 
environment. 
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The most interesting new work along these lines is the production of 
intelligent tutors for various mathematical domains. Schoenfeld (1988, p. 7) 
describes the goal of this work: 

The system would present information to the student; the student would work practice 
problems; the system could speed the student along when her work was going well, but could 
also diagnose the student's mistakes and help when things went wrong; and it could answer 
the student's questions on a wide range of related issues. 

He goes on to point out that 

In order for any tutor (machine or human) to succeed at this, it has to be (a) expert at the 
subject matter, (b) pretty good at figuring out what's going on in the student's head, and (c) 
pretty good at teaching (i.e. have accessible a wide range of teaching strategies). 

As mentioned earlier in this survey, there has been remarkable progress 
toward development of computer tools that are 'expert' at various aspects 
of mathematics - from arithmetic and algebra to geometry and calculus. 
Research in cognitive science is yielding a fairly comprehensive description 
of common conceptual and procedural errors in those topic areas. But 
combination of those ingredients into a flexible, responsive instructional 
tutor that interacts with students in depth is clearly a very difficult problem. 
Work on tutors in arithmetic (Floyd, Hennessy, and O'Shea [11]; Ohlsson 
and Resnick [19]), algebra (Anderson, Boyle, and Reiser, 1985; McArthur, 
Stasz, and Hotta, 1987), geometry and proof (Bell, 1987; Flake [10]; Barz 
and Holland [2]) and calculus (Suppes, Ager, and Berg [20]) is well 
underway. There are some preliminary indications that those tutors provide 
very effective adjuncts to (and in some cases substitutes for) regular teacher 
directed instruction. 

The prototype tutors provide some very interesting learning environ- 
ments. For instance, the algebra tutors commonly display student work or 
model solutions in schematic diagrams that show how reasoning steps are 
assembled into arguments. Then they permit student inspection and modifi- 
cation of any stage in the process, with explanations and corrective 
guidance available in varying degrees at each stage. The geometry tutors 
provide similar diagrammatic displays and corrective feedback as students 
assemble constructions or proofs. The most recent attraction in this line of 
work is the promise of combining computer tutors with video-disk technol- 
ogy to give a visually richer tutoring environment (Terada, 1987; Terada, 
Hirose, and Handa, 1985). There are some stunning examples of what this 
combination could produce, and some others that provide little more than 
teacher lectures recorded on video-disks. 

While these early efforts at intelligent tutors have often been criticized for 
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focusing on teaching the very skills that computers make obsolete, the 
design effort has a number of very productive consequences for mathemat- 
ics education. First, to design a good tutor one must make an intensive 
study of the ways that students process instructional information and the 
most likely spots for difficulty in learning and problem solving. Second, 
design of appropriate computer-based instructional methods is generally 
based on in-depth analysis of the strategies of effective teacher-tutors. 
Examination of traditional teaching from this new perspective often yields 
productive insights into research on teaching. 

Summary 

There is now a small but growing body of research in mathematics 
education seeking to combine the insights of cognitive science and artificial 
intelligence to produce 'expert' computer tutoring systems for various 
subjects. The most impressive of the current examples run on rather 
expensive machines and deal effectively with only limited aspects of mathe- 
matics. The dialogue capabilities of the systems are fairly limited. However, 
there is quite reasonable hope that steady progress can be made along this 
front, providing yet another way that computing can influence the shape of 
mathematics education. 

C O N C L U S I O N S  AND PROSPECTS 

The array of computer applications described in this survey and the 
countless projects which cannot be mentioned due to limits of space and 
time constitute the single most powerful force for change in school and 
university mathematics education today and in the near future. The poten- 
tial in using technology to extend the range of human mathematical 
learning and problem solving is only beginning to be tapped by research 
and development projects, much less in the day-to-day life of mathematics 
classrooms. While some may choose to wait until a clearer picture of the 
'best' response emerges, the situation right now offers impressive opportu- 
nities for progress. 

Effective use of computers for instruction can permit the kinds of 
teaching/learning environments that most teachers long for, while they 
struggle with the constraints of traditional classroom and curricular condi- 
tions. Revision of curricular goals to acknowledge that computers and 
other electronic information technologies are now standard tools for 
problem-solving and decision-making in science, business, government, and 
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industry will lead to significant change in what we ask and empower 
students to learn. There are many important questions to be answered, but 
we really have no choice except to tackle those questions and to bring 
school and university mathematics into the electronic information age for 
which we are ostensibly preparing our students. 
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