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LEARNING CONTEXTS FOR THE COMPLEX ACTIVITY OF
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ABSTRACT. Is proof activity in danger with the use of dynamic geometry systems (DGS)?
The papers of this special issue report about various teaching sequences based on the use of
such DGS and analyse the possible roles of DGS in both the teaching and learning of proof.
This paper is a reaction to these four papers. Starting from them, it attempts to develop a
global discussion about the roles of DGS, by addressing four points: the variety of possible
contexts for proof in a DGS, the dual nature of proof (cognitive and social) as reflected
in the ‘milieu’ constructed around the use of a DGS, from observing to proving, and the
overcoming of the opposition between doing and proving.
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Not surprisingly, proof has given rise to many debates among researchers
in mathematics education since it is the essence of mathematics and the
teaching of proof in mathematics is a key issue which has been investigated
over more than thirty years. Theoretical frameworks have been developed
and numerous empirical data have been gathered in experimental settings
inside or outside the mathematics classroom.

Across the world, debates and discussions have risen again with the in-
creasing use of dynamic geometry computer environments. As mentioned
in all the four papers in this special issue, it has often been claimed that the
opportunity offered by such environments to ‘see’ mathematical properties
so easily might reduce or even kill any need for proof and thus any learning
of how to develop a proof.

The four papers decided to investigate this issue and to bring answers.
All of them decided to construct answers within a theoretical framework
and to set up experiments on the basis of their theoretical perspective.
Even if their theoretical frameworks have some elements in common, each
paper focuses on a specific aspect of a proof and the set of the four papers
provides a multifaceted view on the concept of proof in students learning.
This issue illustrates perfectly how the process of proving is complex and
involves many different dimensions and aspects. In the following lines, we
try to describe to what extent the four papers complement each other.
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VARIETY OF CONTEXTS FOR PROOFS IN A DYNAMIC GEOMETRY

ENVIRONMENT

The collection of the four papers illustrates well the variety of possible uses
of proof in mathematical activities. While three papers address the learning
and teaching of proof for 15–16 year old students at a level of school in
which proof is part of teaching, the paper by Jones deals with preparing
younger students (12 year old) to deductive proof by making them aware
of dependency between properties and enabling them to formulate such
properties in a mathematical language.

The paper by Jones prepares proof with activities in which students
must explain what is observed on the computer screen. The papers by
Mariotti and by Marrades and Gutierrez report on a long term teaching
experiments in which a social contract is introduced in the class accord-
ing to which conjectures or constructions have to be justified: why are
conjectures true or why are constructions valid? Hadas, Hershkowitz and
Schwarz introduce the need for proof as a way of overcoming contradiction
or uncertainty.

The set of papers illustrate the variety of functions and roles of proof
which have been made explicit in previous theoretical frameworks (Bala-
cheff, 1987; de Villiers, 1998; Hanna and Jahnke, 1996). The papers show
very well how proof appears in a diversity of contexts for various reasons
and how the teacher can play on various contexts and situations to motivate
proof activities. By means of empirical evidence, the papers refute the
current idea of proof being in danger by dynamic geometry environments;
the situations and contexts proposed in the papers are actually based on the
features of the environment.

The paper of Jones reports on a teaching unit made of three phases
about the classification of quadrilaterals in which students had reproduce a
figure which could not be ‘messed up’ and in some cases satisfying addi-
tional conditions. For example, they had to construct a rectangle in such a
way that by dragging one of its vertices, it could be modified into a square.
After constructing the figure the students had to explain why the construc-
ted figure was the expected one. Explanation in these tasks prefigures proof
in the sense that explaining consists of giving the conditions implying that
the constructed figure is the expected type of quadrilateral. This task deals
with the idea of implication between properties (or relations) which is
necessary to understand how proof works. The context giving meaning
to proof (or rather explanation) is the robustness of a figure under the
drag mode. The explanations provided by the students give mathematical
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reasons for the fact that a figure remains a specified quadrilateral in the
drag mode.

The paper by Mariotti reports on a long-term teaching experiment in
which the system of axioms and theorems is constructed by students them-
selves as a system of commands introduced in the software which is empty1

at the beginning of the teaching sequence. Proof is the means for justifying
that the new command will provide the expected outcome. This is achieved
by using what is known about previously implemented commands. The
construction of the commands of the system is similar to the construction
of theorems, as written by Mariotti: “it is done in parallel with the construc-
tion of the theory”. Proof is here a means of being sure that the constructed
DG system works as intended. But according to the rules established in the
classroom, every student, confident in the validity of his/her construction,
should defend it in front of his/her classroom mates. Proof fulfils thus a
twofold role: establishing the validity of a construction for each individual
and convincing the other students to accept the construction process.

Although differing from Mariotti’s project, the long-term teaching se-
quence of Marrades and Gutierrez presents some common points. It is also
based on a social organisation in which a solution proposed by a student
must be accepted by the others. In both cases (Mariotti and Marrades and
Gutierrez), the discussion is guided by the teacher since proof is not the
most immediate social way of conviction among students. The teacher
is the warrant of the respect of the discussion and justification rules es-
tablished in the class. The students have a notebook of ‘accepted’ results
which is updated at any time a new theorem has been proven. This note-
book plays the role of the extendable system of commands of the DGS
in Mariotti’s classroom organisation. In both papers there is a specific
social organisation in the classroom for assigning a social role to proof
and increasing the need of having recourse to it.

Whereas formulating proof partly emerges in those papers for social
reasons, in the paper of Hadas, Hershkowitz and Schwarz the need for
proof is mainly due to cognitive reasons and disequilibria. These authors
very carefully designed two sequences of tasks in which the order of the
tasks led students to develop expectations which turned out to be obviously
wrong when they checked them in the dynamic geometry environment. It
created a conflict and an intellectual curiosity to know why this unexpected
property is true. In the first activity, the ‘false’ guess was favoured by the
first task about the sum of the angles of a polygon depending on the number
of its sides. In the second task of the same activity, students were asked to
guess the sum of the exterior angles and were thus predisposed to think that
this sum depends on the number of sides. The second activity is a subtle
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succession of questions about conditions for triangles to be congruent or
not congruent leading students to believe that some constructions were
possible that turned out to be impossible and conversely.

Hadas, Hershkowitz and Schwarz created a climate of uncertainty which
again compelled in students the need to understand better and not to simply
check that what they guessed was wrong. It seems at a fist glance that the
same sequence could be written for environments without DGS. Actually
it would be impossible since the false conjectures came after students were
convinced of other properties thanks to the DG system. These conjectures
were elaborated in the continuation of valid conjectures. In other cases
the DG environment gave a counter example to an expected result. This
interplay of conjectures and checks, of certainty and uncertainty was made
possible by the exploration power and checking facilities offered by the
DG environment. Several examples given by the authors show how using
the drag mode allowed the students to investigate whether it is possible to
get non-congruent triangles with a given number of congruent elements.

THE DUAL NATURE OF PROOF AND THE ‘MILIEU’

Although the four papers do not refer to the theoretical notion of ‘milieu’
(Brousseau, 1997), it seems worth introducing it to interpret the careful
organisation of the context of proof production in those papers. To explain
the solving processes carried out by a student in a task, Brousseau proposes
to model these processes as resulting from mutual interactions between
two systems: the learner and a system offering possibilities of actions
and reactions, a system on which the student can act and which reacts
to the actions of the student. This system (called ‘milieu’ by Brousseau)
is a theoretical construct, which allows for explaining the strategies of the
students. As the student strategies are affected by the context, it is clear
that context and milieu are related. However the notion of context refers to
all external elements, whilst the notion of milieu accounts for the elements
of material as well as intellectual nature which are not controlled by the
student and intervene in his/her mathematical behaviours in the task.

Proof is a target knowledge in the papers and the ‘milieu’, offering both
feedback and action possibilities, includes the dynamic geometry environ-
ment in all of them. But a DGS itself without an adequately organised
milieu would not prompt the need for proof. It is a common feature of
all papers to have constructed a rich milieu with which the student is
interacting during the solving process and the elaboration of a proof. In
all papers, the milieu is developing and at each step in the sequence of
tasks is constituted of all the results found at the previous steps.
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The teaching unit presented by Jones is constructed according to this
principle: at first the students gained understanding of a robust figure in
the drag mode as a figure constructed by means of geometrical relations.
It is only because they grasped this idea of robustness that they could be
faced with the task of explaining why a constructed quadrilateral is of a
specified type. In the same way, the question “why all parallelograms are
trapeziums ?” (task 7 of phase 3) made sense to them only because in
preceding activities, they could draw trapeziums and transform them into
parallelograms by dragging. Although he does not analyse the succession
of tasks in terms of milieu, Jones stresses this idea of progression, by
speaking of ‘progressive mathematisation’ in which “mathematical models
are developed through the successive positioning of contexts that embody
the underlying structure of the concepts.”

The organisation of the milieu has been achieved in the papers accord-
ing to two different ways:

– a cognitive way consisting of a progressive construction of mathem-
atical statements by means of tasks and systematically reconsidered
and questioned by the following tasks

– a social way consisting of a construction of social rules of acceptance
of results in the classroom.

This is not surprising that the dual nature of the constructed milieu, cog-
nitive and social, corresponds to the dual nature of proof, so often stressed
by various theoretical perspectives. A proof in mathematics is a specific
kind of discourse meant both for validating the truth of a statement and
for convincing the others of the validity of this assertion. In both cases, the
milieu is evolving during the sequence of activities and this is the evolution
of the milieu which is a catalyst for proof.

In the paper by Hadas, Hershkowitz and Schwarz it is because the stu-
dents knew more about interior angles of a polygon that they could forge
ideas of what could be the behaviour of the sum of exterior angles. These
ideas turned out to be false thanks to the feedback from the DGS. Ideas and
speculations did not emerge in a vacuum, they originated from existing
knowledge. It is at this point that DGS can play a role in giving evid-
ence that a conjecture is not valid. Cognitive conflict and/or surprise (as
stressed by Aristotle, wonder is both source and end of knowledge) make
the students eager to understand why. Understanding means grasping the
mathematical reasons of the observed contradiction. Understanding cannot
be achieved just through visual evidence as understanding requires re-
structuring the system of conceptions and ideas. Proof based on theoretical
arguments becomes a means to understand.
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It is because of social rules of discussion for accepting or rejecting
statements that proof becomes a means of convincing the others as far
as everybody can check the validity of a proposed reasoning through the
system of rules. Theory may be the warrant of a democratic debate while
not being based on authority arguments.

Both kinds of milieu have their limitations:

– students must understand and agree to enter a collective discussion,
they must follow the rules and the role of the teacher is of course
critical with regard to this aspect

– a cognitive conflict may not arise or if it arises, it may not lead to
overcoming it. In the experiment of Hadas, Hershkowitz and Schwarz,
around 20% of the answers in each of the activities did not mention
any explanation but just stated affirmations.

It is also not surprising that in both cases, the organisation of the mi-
lieu is based on memory of the individual student and of the classroom
(Brousseau and Centeno, 1991). Memory of what is already known, memory
of what is already accepted. Proof in mathematics is by essence based
on memory. Axioms and theorems constitute a collective memory of the
mathematician’s community on which they rely to go further and to pro-
duce proof of new statements. The deductive reasoning is based on memory.
Memory is even reified in two teaching sequences under the form of the
state of the DGS commands (Mariotti) and of a note book (Marrades and
Gutierrez).

As soon as memory is part of the functioning of the milieu, time be-
comes a critical variable. Memory is not instantly built, memory requires
not only accumulation of data but also sorting, eliminating and structuring
of data. Memory is a process over time. The papers do not develop extens-
ive comments on this dimension but actually this latter plays a decisive
role in the evolution of students. The two papers involving collective dis-
cussions are based on long-term teaching sequences. Installing social rules
requires obviously time. The system of tasks in all papers progressed at
a pace related to the cognitive evolution of students. “The complexity of
the theoretical system increased at a rate which the pupils were able to
manage” (Mariotti). Hadas, Hershkowitz and Schwarz managed different
paces in the sequence of the tasks of the congruence activity depending on
the answers of the students.
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CONCEPTUAL BREAK VERSUS CONTINUUM IN THE MOVE FROM

OBSERVING TO PROVING

It has been often said in the past that deductive geometry differs deeply
from geometry of observations: in the former every assertion is either a
given or must be deduced from the givens, in the latter, what you see in
the figure can be taken as granted. We would certainly claim that there
is a deep change of status of the objects in the move from the geometry
of visual evidence to the geometry of objects and relations involved in a
deductive system as expressed in numerous research papers and confirmed
by empirical evidence. But the existence of this conceptual cut does not
imply that the former knowledge of students is not useful when faced with
new task of proving. Nor does this imply that the solving processes of a
proof problem are purely deductive, as we will come back to this point
below.

The paper by Jones is very appropriate to illustrate how proof can be
prepared in teaching with activities aimed at developing students’ aware-
ness of dependency between properties. If properties of figures are not
conceived as dependent, a deductive reasoning has no meaning. The ques-
tion of the validity of a property conditional on the validity of other prop-
erties would not arise in a world of unrelated properties. The sense of
necessity links between properties must be developed to give a meaning
to that question. Constructing robust figures under drag mode may reveal
these necessary links. As soon as one constructs a parallelogram with four
equal sides, one can observe that its diagonals remain perpendicular in the
drag mode. However it may happen that this observation does not lead to
conjecture a dependency between rhombus and perpendicular diagonals.
It is interesting to note that in phase 2 devoted to construction tasks of
robust figures under drag, students did not really formulate the depend-
ency between properties: “It is a square because the sides are equal and
the diagonals intersect. The diagonals are at right angles (90◦)” (pair A).
But in phase 3 where they had to modify a rectangle into a square and to
explain why all squares are rectangle, they extracted the relevant additional
property, which transforms a rectangle into a square. “A rectangle becomes
a square when the diagonals become right angles where they meet” (same
pair A).

Jones stresses this change in the formulations of students from purely
descriptive relying on perception to more precise explanations, at first
situated in the dynamic geometry environment and then related to the
mathematical context. We see phase 3 as critical in this move, even if
the formulations of students in this phase were referring to movement or
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drag. In the movement (change of space over time), the conjunction of
two arising phenomena at a given time revealed to the students the link
between the two phenomena for a rectangle: to become a square and to
have perpendicular diagonals. In a robust construction under drag, the fact
that all valid properties remain satisfied, is certainly a good indication that
there is a dependency relation for experts or students aware of necessary
links. It is not the case for novice students oscillating between a world of
unrelated properties and a more structured world in construction. Change is
more evident to be perceived by novices than permanence. This is why the
simultaneity in the change of appearance is critical for novices because it
is a strong external sign of a link between the two objects changing exactly
at the same instant.

The continuity in the overcome of the break between empirical and
formal ways of justification is present in all four papers, be it in the or-
ganisation of the tasks as in Mariotti or Hadas, Hershkowitz and Schwarz
or in the solving processes of the students as in Marrades and Guttierez.
These latter advocate in favour of the idea of a long and slow transition
from empirical to formal justifications as reflected in their fine analysis
of students solving problems in a DGS environment. They show how the
deductive phase does not appear at the beginning of the solving process but
after several empirical approaches and when it appears, how it is related to
these empirical approaches.

A question arises from this convergence among the four papers. Would
the continuity from empirical to more deductive not particularly be sup-
ported by DGS in that DGS offer a break with paper and pencil geometry?
DGS contain within them the seeds for a geometry of relations as opposed
to the paper and pencil geometry of unrelated facts. The break would be
already entailed in the use of the DGS. This could explain why students
do not enter immediately the new contract of construction of figures in
a DGS, they must learn it. Instead of being faced with this the break at
the level of formulations, students are faced earlier at the level of actions.
We hypothesise that overcoming the break in action is easier for them for at
least two reasons: from a cognitive point of view action very often precedes
formulation, and feedback to actions is more easily recognised.

The continuity from empirical to deductive is reflected in the four pa-
pers by the interrelations between doing and proving which are visible in
the behaviours of the students.
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OVERCOMING THE OPPOSITION BETWEEN DOING AND PROVING

This interaction between student and the DG environment which has been
organised in all the papers of this issue illuminates how proof is not sep-
arated of action. Hadas, Hershkowitz and Schwarz show very well how
“some explanations had to be expressed by doing” and how “action pushed
students towards deductive explanations”. The fundamental principle un-
derlying the teaching sequence in the paper by Mariotti relies on this dia-
lectical link between action and proof, or more precisely between con-
struction and proof. Mariotti explains in the example of students G and C
how the command ‘carry an angle’ is both a construction command and
an internal tool related to a theoretical control. The action of construct-
ing a congruent angle in all possible ways in the triangle activity (Hadas,
Hershkowitz and Schwarz) led the students to understand that there are
non congruent angles with one congruent side and two congruent angles.
Hoyles (1998) in a similar activity of investigating the minimal information
to construct a triangle that is congruent to the one given, concluded about
the matching between proof and construction.

Marrades and Guttierez develop a fine analysis of the interaction between
the ascending phase in the solving process “characterised by an empirical
activity” and a descending phase “where the solver tries to build a de-
ductive justification”. In several examples they show the intertwining of
construction and proof. Students H and C closed the shape built by two
parallel lines and a segment (Figure 1) by constructing a parallel line to
segment AC and obtained thus a rhombus (Figure 2). This probably was
just meant for satisfying a visual demand (according to the Gestalt psy-
chology). But the shape rhombus allowed the students to recognise a line
of symmetry (AK). This was the starting point of a construction leading to
take into account one of the hypotheses of the problem statement (AB=AC)
and to use congruence of triangles to deduce the expected property (BC is
angle bisector of angle ACD).

Figure 1.
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Figure 2.

Another example (the example of T and P), carefully reported in Mar-
rades and Guttierez illuminates very well how a deductive justification
takes its roots in a succession of trials just using drag mode and perceptive
controls and of robust constructions meeting the conditions of the prob-
lem. The authors conclude to the dual nature of the justification: empirical
and intellectual (“empirical justification by intellectual generic example”).
They write: “The successive constructions added conceptual elements that
helped the students to recognise and connect the different mathematical
properties necessary to obtain the correct figure and, then, to justify its
correctness”. The new categorisation of proofs proposed by the authors
reflects this complexity of the proving process made of various kinds of
approaches.

THE ROLE OF A DYNAMIC GEOMETRY ENVIRONMENT

Without doubt the dynamic geometry environment fostered this interaction
between construction and proof, between doing on the computer and jus-
tifying by means of theoretical arguments as claimed by Hoyles (op.cit.):
“Some commentators may question whether the presence of the computer
was necessary [. . .] it was to make construction methods explicit, to al-
low reflection on properties, to check things out and obtain immediate
feedback but most crucially to foster [. . .] an experimental atmosphere
that the teacher could exploit to introduce formal proofs in ways which
matched rather than supplemented student constructions”. We would fur-
ther argue that dynamic geometry environment leads to analyse differently
the processes involved in a proving activity as mentioned in Hadas, Her-
shkowitz and Schwarz and illustrated by the new categorisation of proofs
proposed by Marrades and Guttierez. Following Jones and Mariotti, we
could also claim in Vygotskian terms that DG environments afford possib-
ilities of access to theoretical justifications through the semiotic mediation
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organised by the teacher around construction tools of dynamic geometry
environments.

NOTES

1. Cabri allows the user to configure the available tools and menus by adding any new
construction or suppressing any tool.
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