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ABSTRACT. The study that informs this article was undertaken to investigate the bene-
fits and limitations of using pre-constructed, web-based, dynamic geometry sketches in
activities related to deductive proof at the secondary school level. Two distinct themes
emerged from analysis of the results — first, the relationship between the activities and
the development of geometric thinking skills, and second, the relationship between the
design of the materials, and the exploration process. This article focuses on the latter. An
analysis of the data showed that task question and sketch provision must work together
to create an environment for exploration. It also indicated that explicit attention to visual
interpretation and exploration using change is required in order for students to benefit fully
from their experiences with pre-constructed dynamic geometry sketches. This article draws
attention to the idea that pre-constructed dynamic sketches (whether web-based or not) and
accompanying materials are central elements of the learning activity of which they are a
part, and therefore, that decisions about their design have the potential to support or impede
the development of exploration strategies and geometric thinking skills. An examination
of student responses to particular questions in light of visual and dynamic geometry re-
search suggests that through the materials we may be able to improve students’ use of
the mathematical investigation process in exploring pre-constructed dynamic geometry
sketches.
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When we say we educate children, it sounds like something we do to them. That’s
not the way it happens. We don’t educate them. We create contexts in which they
will learn. (Papert, quoted in Pease, 1989)

The dynamic-geometry supported classroom offers a challenge regarding
the creation of the contexts mentioned by Papert. Students in such classes
may spend much of their class time interacting with a computer program,
rather than communicating with a teacher. We hope that they will actively
explore visual images, discuss, analyse, and communicate their findings.
In order to ensure such focused and productive activity, we must develop
worthwhile tasks that take into account the realities of this special learning
environment.

Students can use dynamic software to construct and manipulate their
own diagrams, but pre-constructed sketches are also available for use in
geometry tasks. The study that informs this article was undertaken to in-
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vestigate the benefits and limitations of using pre-constructed, web-based,
dynamic geometry sketches in activities related to deductive proof at the
secondary school level (Sinclair, 2001). Two distinct themes emerged from
analysis of the results — first, the relationship between the activities and
the development of geometric thinking skills, and second, the relationship
between the design and use of the materials, and the exploration process.
This article focuses on the latter.

BACKGROUND

Pre-constructed, web-based dynamic geometry sketches share some fea-
tures with sketches pre-constructed with Cabri Géometre (Baulac, Belle-
main, and Laborde, 1992), or The Geometer’s Sketchpad (Jackiw, 1991).
Points on the sketch can be dragged to enable reasoning about invari-
ant properties and to provide evidence about the validity of conjectures.
Pre-set relationships, such as measurements and ratios, change to match
the change that has occurred as a consequence of dragging. Web-based
sketches also support action buttons to hide or show additional details, to
move and to animate objects. Those created with JavaSketchpad (Jackiw,
1998) do not permit the user to construct or delete objects; however, those
designed with Cinderella (1999, Richter-Gebert and Kortenkamp) can in-
clude options for constructing a limited number of objects.

Whether a pre-constructed sketch is web-based or not, it presents a
geometric situation to the student in visual format. Since the creator of
an image knows details that are hidden from an ordinary viewer, inter-
preting a pre-constructed sketch is similar to interpreting a picture that
someone else has drawn. Dynamic sketches add the complexity of motion
to this already difficult task. Thus, designing pre-constructed dynamic geo-
metry sketches to support the development of mathematical understanding,
involves understanding visual reasoning and its relationship to dynamic
exploration.

Visual reasoning and dynamic exploration

Today more and more information is presented visually and research is
showing that understanding and interpreting what we see — a process Wheat-
ley (1998) calls ‘imaging’ — is not simple. According to Wheatley it in-
volves three activities: constructing an image, re-presenting the image, and
transforming the image. The implication is that the meaning we take from
an image is not necessarily the meaning that someone else takes, because
it depends in part on what we know about what we are looking at (p. 129).



DESIGN OF PRE-CONSTRUCTED GEOMETRY MATERIALS 291

One of the difficulties facing students is that mathematical pictures and
diagrams contain a great deal of specific content information represented
in a concise but ‘nonsequential’ format (Goldenberg, Cuoco and Mark,
1998). This requires students to apply their own organisation to the inform-
ation, and to draw conclusions about how items are connected. The ability
to interpret visual information is so important that Duval (1998) recom-
mends that visualisation processes, including heuristic exploration of geo-
metric problems, be developed separately from the construction processes
and reasoning processes necessary for geometric analysis.

Behind heuristic exploration of geometric figures is the need to under-
stand the role of invariants. Goldenberg, Cuoco, and Mark (1998) contend
that before students are able to look for invariants in geometric relation-
ships they must first develop “the ability to take apart in the mind, [and] see
the individual elements” (p. 7). Presmeg (1999), noting that a diagram “by
its nature depicts one concrete case or instance”, suggests that to develop
the ability to generalise, students need to have the opportunity to use ‘more
abstract’ forms of imagery. In a 1986 study of visualisation in high school
students, Presmeg found that dynamic imagery — although used by only a
few ‘visualisers’ — was effective in this regard.

If examining relationships through motion is a technique that helps
highly visual students, then we must determine whether, or how it can be
taught. Teachers and textbook writers have always ensured that diagrams
illustrate the generic case; however, when using dynamic software, a stu-
dent can inadvertently create a special case by dragging. Students who
have not learned to use change to explore a visual image, can only analyse
a static onscreen sketch, regardless of its suitability as a model.

Ponte (2000) notes that the French, British, and Portuguese curricula,
as well as the NCTM Standards, expect students to engage in investigative
activities traditionally associated with scientific work, in order to formulate
and test conjectures. Many teachers have incorporated dynamic geometry
software in their programs because it provides an accessible and powerful
tool for investigating geometric ideas. As Laborde (2001) notes, the “in-
terplay of conjectures and checks, of certainty and uncertainty was made
possible by the exploration power and checking facilities offered by the
DG environment.”

We know that to successfully explore a geometry problem with dy-
namic software, students must be able to verify, conjecture, generalise,
communicate, prove and make connections (Chazan, 1990, p. 630). Even
more basic however, this study showed that students must actually learn
the process of exploration. In the most general sense, this means learning
to notice, to pose questions, and, as mentioned earlier, to use change to
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investigate relationships. The materials used are of central importance in
helping students develop these skills. The findings of my study suggest
that the materials ‘intervene’ in the learning environment and consequently
must be designed with attention to several important criteria.

Interventions

In 1999 Towers researched the role of the mathematics teacher vis-a-vis
individual students. She examined the nature of teachers’ interventions
and identified those that contribute to the growth of student understanding.
Towers categorised the following intervention strategies: managing, check-
ing, reinforcing, inviting, clue-giving, enculturating, blocking, modelling,
anticipating, praising, retreating, and rug-pulling. She also identified three
teaching styles: (a) showing and telling, (b) leading, and (c) shepherding.
She found that the shepherding style and the strategies of rug-pulling and
inviting consistently contributed to the growth of student understanding
(Towers, 1999). Her definitions for these are:

Shepherding: An extended stream of interventions directing a student towards
understanding through subtle nudging, coaxing and prompting.

Inviting: Suggesting of a new and potentially fruitful avenue of exploration. More
open-ended than clue-giving. [Clue-giving is a deliberate attempt to point the
student to the correct answer or preferred route.]

Rug-pulling: A deliberate shift of the student’s attention to something that con-
fuses and forces the student to reassess what he or she is doing.
(Towers, 1999, pp. 200-202)

Towers” work is especially relevant for the technology-supported mathem-
atics classroom because the nature of a lab classroom supports teaching
small groups or pairs rather than delivering whole-class lectures.

In a recent study of the effects of technology-enhanced classrooms on
students of low socioeconomic status, Page (2002) found an increase in
students’ self esteem, and significantly higher mathematics achievement
— phenomena noted in several earlier studies (cf., Tyler and Vasu, 1995;
Repman, 1993). He posits that the increase in student-centred interactions
among students in the experimental group was an important factor in these
results.

These two studies illustrate the importance of interventions and inter-
actions within the learning environment. Extending these ideas further,
I contend that the beneficial (and deleterious) effects of the technology-
based activities in this study were strongly related to ‘interventions’ of the
task materials themselves.
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Design of task materials

In their 1996 summary analysis of research on computer-based learning
environments in mathematics, Balacheff and Kaput note that one of the
ways in which the computer makes its primary impact is by “changing
the relationships between learners and the subject matter and between
learners and teachers — by introducing a new partner” (p. 495). The result-
ing environment is didactically complex. In addition to the usual teacher-
student interactions, there are interrelationships among the student, the
computer and the task, which impact the learning situation (Balacheff,
1991; Sutherland and Balacheff, 1999). The task introduces a didactic
framework, which permits students to interact with the particular software.
The nature of this student-software interchange is, in turn, shaped by the
unique characteristics of the software.

‘Task’ as used in this article refers to more than the mathematical prob-
lem or concept at its core. First, it includes the questions and instruc-
tions for students, whether onscreen or in printed form. These materials
and teacher guidelines are fundamentally important as noted by Dreyfus
(1991):

.. .the booklet that forms part of the environment includes a set of worksheets and
a set of proposals how to integrate the software into class work. And it is these
two components that make the software into a learning environment that can be
implemented with average teachers in an average school system.

(Dreyfus, 1991, p. 127, italics in original)

However, in the case of pre-constructed sketches, the task also includes the
sketch itself, together with any special investigative software tools created
by the designer.

Keller, Wasburn-Moses, and Hart (2002) are presently investigating the
impact of using on-line curriculum-focused applets to improve students’
visualisation skills with respect to isometric drawings. The team spent the
first two phases of the project creating materials and developing a “robust
applet for isometric drawing and spatial visualisation” (p. 18). This need
for careful front-end attention to the design of materials is typical of any
mathematics education project that seeks to use technological visual tools.
It is partly related to the technical difficulty of constructing objects that
will do what you want them to do; but it is also related to the following
dilemma:

.. .everything that she undertakes in order to make the student produce the beha-
viours that she expects tends to deprive this student of the necessary conditions
for the understanding and the learning of the target notion; if the teacher says what
it is that she wants, she can no longer obtain it. (Brousseau, 1997 p. 41)
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In designing a pre-constructed sketch and the accompanying materials, it is
not trivial to determine which details to include or which questions to pose
since making too much available can remove the motivation for exploring
and providing too little can make a task impossible.

Since pre-constructed sketches present the student with collections of
already assembled objects — as opposed to basic geometric elements with
which to construct objects — accompanying materials should (at least in
some areas) be fundamentally different from those developed for construc-
tion activities. This study examined how students responded to materials
designed for use with pre-constructed, web-based sketches. The results
provide insight into how the designer can exploit the potential interaction
between two components of the task — the sketch and the labsheet.

STUDY

The research used a case study approach and multiple sources of inform-
ation — observation field notes, videotape, audiotape, a student question-
naire, and interviews with teachers. Collected data were transcribed, then
analysed by coding, developing categories, describing relationships, and
applying simple statistical tests where appropriate.

Participants

Sixty-nine students, aged seventeen to eighteen, in three classes — class A
from school S1, and classes B and C from school S2 — participated in this
study. All students were enrolled in a grade twelve advanced mathematics
program that covered topics in algebra, geometry, analytic geometry and
trigonometry. The study focused on the topic of congruence and parallel-
ism, which was part of the geometry section (Curriculum guideline, 1985,
p. 60). The students had done introductory work on deductive geometry
related to this topic in grade 10 and on similarity in grade 11. None of the
students had worked with dynamic software.

Students worked in pairs. In each class, several pairs were studied in
more depth by audiotaping or videotaping their activities. The students
in the taped pairs were chosen by the teacher to represent the range of
achievement levels within the class, but students in any particular pair were
not necessarily at the same achievement level. In the article, where appro-
priate, student aliases will be followed by indications of their achievement
level (E, VG, G, A, or W, corresponding to Excellent, Very Good, Good,
Average, or Weak) as determined by their teacher. For example, Pat and
Dave, A/W, indicates that Pat’s achievement was average and Dave’s was
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weak. In a transcript notation, Paul (E) indicates that Paul’s achievement
was excellent.

Materials

Four web-based dynamic geometry sketches were prepared for students
to investigate during the sessions, two extra sketches were made available
to students who finished early, and one sketch was prepared for a group
discussion. The sketches included facilities for hide/show, movement, and
animation where appropriate. Each sketch was constructed using 7he Geo-
meter’s Sketchpad and converted to html using JavaSketchpad. The html
version maintained all relationships constructed in the original.

In the pre-study interview the three study teachers identified difficulties
that their students experience in the geometry strand. For example, teachers
mentioned that students constructing congruency proofs frequently select
sides or angles that do not correspond to one another, or, in fact, do not
even belong to the subject triangles. They noted that this problem usu-
ally occurs when figures overlap or are presented in rotated, reflected, or
translated form. These student difficulties reveal an inability to ‘see’ each
overlapping figure separately or to mentally transform a figure to a new
orientation to compare it with another.

Such difficulties may stem from, or be associated with, the need to re-
cognise a side or an angle as an element of two or more figures. Fischbein
(1987) suggests that difficulties in this area are related to the duplication
obstacle, identified by Duval (1983), which arises when students are faced
with accepting that a mathematical object can play two roles. To address
these difficulties, at the design stage I set up action buttons or provisions
to highlight particular figures, to toggle details on and off, and to rotate
or reflect shapes so that they could be superimposed, or viewed from the
same orientation.

Problems chosen as the basis for the web-based sketches related to
triangles and quadrilaterals and were similar in difficulty to those in the
student text, Mathematics: Principles and Process, Book 2 (Ebos, Tuck,
and Schofield, 1986). Students were asked to prove triangles congruent,
to prove altitudes equal, and to investigate the question, When do the
diagonals of a parallelogram bisect one another?

Each labsheet included: directions for opening and manipulating the
sketch, a statement of the problem, and questions related to the task (see
Appendix A for an example). Each question or instruction was designed to
do at least one of the following:

e focus student attention on details in the sketch;
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Prove: Triangle ABC congruent to Triangle FCB

[A Show Given Informatioh

[+ Separate ABC and FCB|

[A Show reflection and mirrof

mCF =1.6 cm A Hide Reflectio
mAB =1.6 cm 3 Match FCB and ABC
mZABC = 116° {2 = |
m/FCB = 116°
F
o
C‘. B- E _H c B __.’C

[A Show perpendicular through Hi

v

Figure 1. Day 1, task 1 — View on selecting: ‘Show Given Information,” ‘Separate ABC
and FCB,” and ‘Show perpendicular through H.”

e encourage students to explain their thinking about the relationships
they observed;

e help students move through an investigation by prompting them to
examine the evidence in the onscreen model, to check hypotheses, or
to consider other possibilities;

e help students develop a proof.

Overview of session tasks

Three 75 minutes sessions or four 45 minutes sessions were held with each
class. During this time, student pairs worked on four tasks. An additional
task was done as a whole class activity. A very brief overview of the four
main tasks and one of the extra tasks is included here to help the reader
follow the discussion.

1. Day 1, task 1
This sketch was developed to introduce students to JavaSketchpad, and

specifically, to address student difficulties with overlapping figures and
selection of triangles.
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In the sketch, A ABC and A FCB are reflections of one another in the
perpendicular bisector of BC, which can be toggled on or off using the
‘Show perpendicular through H’ and ‘Hide’ buttons. When the sketch is
first opened, point A is red, indicating that it can be manipulated. As point
A is dragged, point F undergoes opposite motion as a reflection should.

The two triangles ABC and FCB can be separated using an action but-
ton with label, ‘Separate ABC and FCB’. The button, ‘Show reflection
and mirror,” reflects triangle ABC in a red mirror line. The button, ‘Match
FCB and A’B’C’ causes triangle FCB to move on top of the reflection
of triangle ABC, demonstrating congruency. A reset button is provided to
move triangle FCB to its original position.

The ‘Show Given Information’ button controls the display of the mark-
ings that indicate the equality of AB and FC, and /ABC and /FCB, as
well as the measures of these lengths and angles. As a vertex of the figure
is dragged, the measurements update.

The labsheet for Day 1, task 2 (see Appendix A) asked students to prove
A ABC congruent to A FCB. The proof could be carried out by a straight-
forward application of the SSS (side, side, side) congruency theorem; the
task aimed to help students select the correct sides by providing the tools to
separate and reorient the triangles, and by asking specific questions about
observations and results.

2. Day 1, task 2

The second task for day 1 was designed to address student difficulties with
overlapping triangles, selection of triangles, and two-step proofs. All tri-
angle pairs that could be selected were reflections, and congruency could
be established or not established by considering what would happen if one
member of the pair was flipped over. For example, triangle BEF and BDF
can be shown to be congruent using SSS. This implies that BF is a line
of reflection. If BD and EF are produced to intersect at A, then by the
properties of reflection we know that BC is equal to BA and FC to FA.
Since the curriculum focuses on Euclidean proof, study students were not
able to compose a transformation argument such as this; however, their
awareness of symmetry as shown later in this article suggests that they
were ready to consider such an option.

This task inadvertently introduced an element of uncertainty, by includ-
ing one pair of triangles (BAF, BCF) that could not be proven congruent
with the given information (i.e., in two steps, although the congruency
could be established through carrying out an additional congruency proof).
This is not usually done in textbook problems.
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Prove: BA=BC

|A Show Given Information| I‘ Show Pair #1| |& Hide|

[A Show Pair #2| [A Hide|

|A Show Pair #3 & Hidel|

mDF =1.3cm : :
mFE =1.3cm |A Show Pair #4 |A Hide|
nnigg[é zggz 5 | Separate| |+ Join|

A Show copy
A Hide copy, p& A

A c

Figure 2. Day 1, task 2 — View on selecting: ‘Show Given Information,” ‘Show Copy,’
and ‘Show Pair #1.

To help students notice details and pick out shapes, the sketch included
the following design elements:

e The four chosen pairs of congruent triangles (BDF, BEF; BAE, BCD;
ADE, CED; and ABF, CBF) were shaded in four different colours;
given equal angles were shaded red; information could be toggled
off and on to further emphasise details; triangle pairs could be separ-
ated; measurements for the given angles and lengths were displayed;
measurements updated as points on the sketch were dragged.

e Overlapping figures could be separated; colour was added to emphas-

ise the shapes; colour was also used to overlay angles and sides within
the shape.

It was expected that students would prove the pairs congruent in the follow-
ing ways: BDF, BEF — SSS; ADE, CED — ASA; BDC, BEA — ASA. [Note:
ASA refers to the angle, side, angle congruency theorem.] The labsheet

encouraged students to examine each pair by using the separate, join, and
hide/show commands.
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Prove: Triangle AMD is congruent to Triangle CNB

|A Show Given Informatio

DC =5.6cm

BA=5.6cm

AD =28cm s
CB=28cm

mZBNC =90°

mZAMD =90°

A Show Triangle D
A Hide Triangle|

<+ Move O ->

| Move O->Midpt Handle

Figure 3. Day 2, task 1 — View on selecting: ‘Show Given Information’, ‘Show Triangle”,
and ‘Move O—U.’

3. Day 2, task 1
This task gave students the opportunity to apply properties of parallel lines
and to investigate a problem using a rotation.

The triangles to be proven congruent were coloured to attract student
attention. When a vertex of quadrilateral ABCD was dragged, AD and BC
appeared to remain equal and parallel, as did AB and DC. When the ‘Show
Given Information’ button was used, students could deduce that ABCD
was indeed a parallelogram since opposite sides were marked equal.

It was expected that students would use ASA (angle, side, angle congru-
ency theorem) to prove that AAMD and ABNC were congruent: AD =BC
(given), ZDAM = /BCN (parallel line law), and /MDA = /NBC; however,
students could also investigate the relationship between the two by super-
imposing an additional given triangle over AABC and then rotating it to fit
over ACDA. This movable triangle was a tool for testing whether AAMD
and ABNC were congruent; however, it could also be used to demonstrate
the fact that congruent triangles have congruent altitudes (i.e., AABC and
AADC are congruent, which implies that AM must equal BN). Questions
on the labsheet such as: “What do you notice about the new triangle?” and
“How can the information provided by these images be used to explain
why DM = BN?”, were aimed at helping students notice and address the
information provided in the sketch.
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When do the diagonals of a parallelogram right
bisect one another?

[A Show Perpendicular

mZ EFC = 90°

[A"Show Informatior

mAB =3.8cm
mDC =3.8¢cm
mBC =5.8cm
mAD =5.8cm

mDB =7.9cm
mAC =5.9cm
mHC =3.0cm
mAH =3.0cm
mDH =3.9¢cm
mHB =3.9cm

B
1

Figure 4. Day 2, task 2 — View on selecting: ‘Show Perpendicular,’ and ‘Show
Information.’

4. Day 2, task 2

This task was designed to help students investigate the question: “When
do the diagonals of a parallelogram right bisect one another?” The sketch
included parallelogram ABCD, with diagonals AC and BD. The oppos-
ite sides were marked with arrows, the traditional markings for parallel
lines. Measurements of the sides, diagonals, and semi-diagonals could be
toggled on or off using Show/Hide buttons.

Since it can be frustrating to drag an angle until the measurement is
precisely 90°, the button ‘Show Perpendicular’ produced a line perpendic-
ular to AC. Students could drag the diagram until BD was aligned with the
perpendicular — a slightly easier task.

Day 2, task 2 was undertaken after a short class session on conjecturing.
Since the task involved knowing the term ‘right bisector’, the first section
of the labsheet asked questions about the meaning of ‘bisect’, ‘right bisect’,
and ‘right bisect one another’. The labsheet then asked students to drag the
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Prove: Triangle CJL is isosceles

[A Show Given Informatioh

m/CEG =56°
m/CGE =56° _
JE=3.0cm 4 Hide
LG =3.0cm

J E N G L

Figure 5. Day 1, task 3 — View on selecting: ‘Show Given Information,” ‘Show CN,’ and
‘Show More.’

diagram and to conjecture a response, to develop a proof of the conjecture
and then to outline an alternate proof.

5. Day 1, task 3

One of the extra tasks provided for students who finished early, Day 1, task
3, invited students to examine a sketch that looked like two nested isosceles
triangles JCL and ECG. It asked the students to prove that triangle CJL was
isosceles.

When the sketch was opened J, E, G, and L were collinear; however,
students were able, using the Show More button, to examine a second
situation in which these points were not collinear, and thus to consider why
it is important to clarify initial assumptions. If the points are collinear, then
the two triangles are isosceles. If the points are not, then the outer figure is
not even a triangle.

Data coding and analysis

In the first run-through, I codified the transcripts according to what was
happening at the time. Some examples of these first codes were: students
on task, pointing to screen, dragging diagram, using motion button, de-
ducting from visual, erroneous conclusion. The results were a rather dis-
connected series of observations.
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On the second run-through, each of the annotated activities was ex-
amined to uncover the underlying motivation. Some of the codes at this
stage were: checking understanding, modelling thinking, reinforcing ideas,
posing inviting questions, colour used as reference.

As the work progressed I realised that many of the codes that described
teacher interactions with taped pairs were similar to those described by
Towers’ (1999). I replaced codes (where appropriate) with hers and looked
for evidence of the other styles and strategies that she had identified. Since
I was analysing student pairs working together in an informal setting,
rather than participating in a teacher-led lesson, I did find that certain inter-
ventions such as ‘shepherding’, which is a more subtle form of teaching,
were more prominent — corroborating Towers’ findings.

While the coding was beginning to highlight themes with respect to
the teacher’s role, most of the transcripts contained very little teacher-
student discourse. There was more discussion between student partners.
I developed new codes to describe these interactions: students correct one
another, working at cross-purposes, struggle; however, it was obvious that
students were reacting not just to their teacher or their partner but to some
other stimulus.

I started to investigate the relationship between student comments and
particular labsheet questions, or sketch features. First, I created an analysis
table for each labsheet (see example in Appendix B). The first column
included the instructions, statements, and questions from the original lab-
sheet. The second column set forth the purpose I had intended that state-
ment or question to fulfil. The third column described the role that I had en-
visioned for the sketch in relation to the statement or question. In choosing
entries for the columns [ used Towers’ category labels wherever possible in
order to facilitate comparisons to the transcripts, then developed additional
descriptions as required. For example, beside ‘Open Jsketchl’, was the
word ‘managing’ since this instruction was only intended to contribute to
the management of the activities. Beside ‘drag each red point and observe
the diagram’, the sketch column included the notation, ‘draws attention —
colour, movement.’

I then investigated student responses to these statements. In addition to
new labsheet and sketch codes, which I inserted at appropriate questions
and statements, new codes for student responses emerged, such as: hypo-
thesises, struggles to remember, answers, is confused, concludes. These
represented not just the outward actions but the inner thinking of the stu-
dents, explicitly linked to the task components — the labsheets and the
sketches.
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DISCUSSION

Labsheet questions and statements were categorised as: managing, focus-
ing, prompting, rug-pulling, inviting, and checking. Sketch provisions were
listed as: providing a shared image, drawing attention through affordances
such as colour and motion, supporting experimentation, and providing al-
ternative paths. These categories helped me study the relationships between
the sketches and the questions, and identify those that were significant in-
fluences on student explorations. Some were relatively uninteresting (such
as instructions that managed — e.g., Open Jsketchl); others revealed im-
portant information about the learning environment.

The following analysis looks at the data regarding the study materi-
als from two perspectives: 1) how students responded to particular ques-
tion ‘types’ and sketch provisions; 2) how particular results highlighted
elements that were missing (and needed) or poorly designed.

Noticing

Focusing statements such as the following, directed students to use partic-
ular affordances of the sketches. They — the question and the affordance —
were intended to help students notice mathematical details.

1. Notice that some points in the sketch are red.
2. Click Show Given Information #1.
3. Click Show Triangle.

The following (unconnected) comments show that students at a range of
achievement levels did notice details.

Doug (A):  Angle BED —hey! ... Angle BED is 72.455.

Katy (A):  Um, uh the angle shadings. They’re the same angles. Yeah, I
would say that. The angle shadings mean that they’re congruent
angles. So, congruent sides and congruent angles.

Dave (W):  They match. It matched it with the other one. It shows us that
they’re congruent.

Paul (E): You’re working inside the thing again. Just look at — see the red
part? Stare at the red parts. Blur out the black parts. No looking
at the black parts — look at the triangle.

Colour drew attention — students noticed items that were coloured and
sometimes missed those that weren’t. The ability to toggle colours off and
on helped students to select and describe particular figures. Colour was
also used as a simple and effective means of referencing objects in dis-
cussion as shown by Paul’s comments. On the other hand, despite Doug’s
comment, the transcripts show that measurements were often ignored.
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It is not clear whether students just did not notice the measurements
— in JavaSketchpad lengths and angles are in a list and not attached to
the object — or whether they were so attuned to deductive geometry that
they did not expect to use measurement data. The ability to display an
accurate image is commonly assumed to be a benefit of dynamic geometry
software — it seems reasonable to conclude that the task of noticing and
interpreting relationships between objects is easier if figures are drawn to
scale. However, the study results showed that students do not automatically
understand that the onscreen image is accurate.

Some students treated the onscreen image as if it were a pencil sketch
— as if the diagram represented objects and their relationships, but was not
drawn to scale. For example, they made comments such as: “Maybe cause
it’s slanted you can’t tell it’s a square” (Barb and Clara, VG/VG, March
29, 2000), and “If this is equilateral these sides would have to be equal”
(Paul and Sue, E/E, March 28, 2000). [In this latter instance, the triangle
was clearly not equilateral]. I hypothesised that such responses might stem
from prior use of textbook diagrams. Geometry teachers frequently warn
their students not to make conclusions based on the appearance of these
diagrams because they are not necessarily accurate.

Whatever the reason, the tendency of study students to gloss over meas-
urements is in stark contrast to their awareness of colour and motion. It is
of concern because the ability to explore using change requires focused
attention to details that update under the operation of dragging.

Taking action

Once students have focused their attention on a particular object they need
to do something meaningful. Particular questions and instructions promp-
ted students to take action. For example:

1. Explain the meaning of the tick marks and the angle shading.
2. Write two additional facts that you know and explain why they are
true.

All students responded to this type of question/instruction by examining
the sketch and discussing their answers. The pre-constructed web-based
sketches supported their investigations by providing dragging capabilit-
ies, onscreen data, and familiar labels and marks. The next two excerpts
show how the affordances were used by students in response to prompting
statements.

1. In response to, “Use your observations and the appropriate congru-
ency theorem (SSS, SAS or ASA) to prove that AABC is congruent
to AFCB” (Day 1, task 1, see Figure 1):
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They’re the same. We're still looking for a
third. OK reset it. OH, see how they’re sharing
a side? It has to be equal.

BC?

BC. Cause they share the side—so it has to be
the same length.

Uses reset button to
view triangles together

(Katy and Bea, A/A, April 3, 2000)

2. In response to “What shape is ABCD? Explain.” (Day 2, task 1, see
Figure 3):

Pat:
Dave:

Dave:
Pat:
Dave:
Pat:

It’s a rectangle — ABCD

This equals that and this equals that. [He points
to each side.]

Ya. AD is equal to BC, right? Right?
AD is equal to BC

Is that given? I think that’s given.
Let me see it separated, OK?

Uses the static dia-
gram as a reference

Looks for evidence

Uses separate button

(Pat and Dave, A/W, March 29, 2000)

Although initially intrigued by the ability to drag points, the study results
show that students usually stopped dragging after a short time and con-
centrated on interpreting the static figure. I believe this indicates several
things: 1) that the provision of the dragging capability is not enough to
help students interpret pre-constructed dynamic figures and that in order
to make effective use of dynamic diagrams students must be able to direct
their use of dragging, i.e., they must learn to use change to explore; and 2)
that task designers must focus on developing questions specifically about
the motion.

Surprise

One question which was only intended to prompt students to gather evid-
ence for congruency generated a great deal of discussion and investigation.
The question was:

Do you have 3 pieces of information to show whether each pair of triangles is

congruent?

(Day 1, task 2, see Figure 2)

In fact, there were not always three pieces of information — a situation that
created uncertainty and surprise. It was this ‘rug-pulling’ question that first
made me aware of the strong relationship between students and materials.

Research undertaken by Hadas and Hershkowitz (1999) demonstrated
that uncertainty helps students develop understanding of geometric con-
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cepts. When students are unable to construct an example using dynamic
software to confirm an apparently reasonable conjecture, uncertainty res-
ults. This is similar to Towers’ rug-pulling intervention through which
teachers deliberately confuse students to draw their attention to subtle
relationships. The actual question does not usually introduce uncertainty.
In most cases, the student considers that a particular question is easily
answered, but upon further investigation the student realises that the result
is not straightforward.

In the study tasks, there were several examples of questions that led to
uncertainty when the accompanying sketch was explored.

Example 1:

Day 1, task 3, one of the extra sketches (see Figure 5), was deliberately
designed to surprise. Initially it looked like a simple nested set of isosceles
triangles. However, the base could be broken and thus, the nature of the
exterior figure should not have been assumed. Unfortunately because of
time constraints only two taped pairs worked on this task. In the following
excerpt, Joe and Bob come to a new awareness. In response to, “Is it true
that ACJ’L’ is isosceles?” (Day 1, task 3, see Figure 5) they have the
following discussion:

Bob: Um. Isosceles?

Joe:  Sure. But it — but it might not be — like — like | Experiments with
Bob, it could not be an isosceles. Say I went | sketch
like this. . .

Bob: Look—-LNJ. Surprise

Joe:  Ya, but what do you need that for? You don’t
need that for anything.

Bob: Oh, you can need it.

Joe:  You know what the answer is? No they’re not | Concludes correctly
isosceles because if you move one they both | that it is not isosceles
have to move. Is it isosceles right now? I don’t
think so.

(Joe and Bob, A/A, March 30, 2000)

Example 2:

The second example that led to uncertainty was not intentional. As noted
earlier I included pairs of triangles in Day 1, task 2 (see Figure 2) that
did not have three pieces of information available to prove them congru-
ent (and since the sketches were web-based they could not construct or
measure anything else). This confused students because their experience of
geometry problems was limited to situations that could be solved. Students
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reacted to this surprising situation in several ways. Some spent a great deal
of time — certain that they must be missing something. Others made up
information! For example:

e Sarah and Earl decided that there were three pieces of information
because of the ‘bisector theorem’. They returned to the problem sev-
eral times. Sarah can be heard asking, “Is the bisector allowed?” She
didn’t question their decision to include BF as a bisector — just wor-
ried that they might not be allowed to use it. At one point she said, in
a rather frustrated voice, “I feel obligated that there must be 3 pieces
of information given” (Sarah and Earl, G/A, April 4, 2000).

e Lily and Fran couldn’t find anything more than the fact that BF was
a common side. They asked the next group for help, but were not
told anything. They re-examined the sketch — separating it again and
again. Fran attempted to include in the proof, relationships of sides
and angles inside the triangle but Lily corrected her, saying: “We’re
not supposed to be focusing on that”. After I led them through an
organised check, they realised that they didn’t have three pieces of
information, but they weren’t confident enough to abandon the search
until I arrived (Lily and Fran, VG/A, April 4, 2000).

These episodes underscore the importance of circulating among students
throughout sessions and of gathering students together to discuss ideas
and conclusions. Moreover, while surprise can be a powerful way to en-
gage students, if this surprise is initiated by a dynamic image — especially
one that the student did not construct-in a non-teacher directed activity,
materials should incorporate some question or statement that hints at the
possibility of a surprising result to avoid causing undue frustration for
students.

Inviting

Inviting questions such as the following, were more open-ended than the
prompting questions mentioned earlier.

1. What additional information can you deduce about point H from the
diagram? (Day 1, task 1, see Figure 1)

2. How can the information provided by these images be used to explain
why DM = BN? (Day 2, task 2, see Figure 3)

These questions asked students to use their observation and interpretation
skills, and to look at the problem from a different perspective. To answer,
students needed to explore alternative paths.

The need for alternatives highlights an important design consideration.
In order for students to explore uncharted territory, a pre-constructed web-
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based sketch must provide options. Nevertheless, providing options is only
part of the issue. All of the study sketches could be dragged into con-
figurations that went well beyond the needs of the particular assignment.
Measurements of various sides and angles were provided, even when they
were not strictly required. And although students usually carried out tradi-
tional congruency proofs, all sketches could be explored via transformation
relationships. However, many students did not know how to make use of
these provisions. I contend that this problem had nothing to do with their
computer skills and everything to do with their inability to pose their own
questions.

Exploring involves making observations, then making choices about
what one will do next. Decisions are based on answers to questions —
“What will happen if I pull this point?” “How are A and B related?” “Is M
a midpoint?” The designer of task materials cannot put all these questions
on the screen or on a labsheet — like Brousseau’s teacher who does not want
to reveal too much, the designer must ensure that the task is open enough
to allow the student to develop his or her own understanding. Instead, to
help students move through an investigation the task creator can include 1)
general exploration directives and suggestions, especially those related to
using motion, and 2) statements that encourage students to pose their own
questions about visual information.

Transformations and visual ideas

Student responses to another ‘inviting’ question in the study draw attention
to the fact that we often focus on methods that are more suited to symbolic
rather than visual analysis. Day 1, task 1 (see Figure 1) included the fol-
lowing question: “How can the information provided by these images be
used to explain why AABC is congruent to AFCB?” Here, the students
were asked to prove the two triangles congruent — not in the usual way
by “trolling for triangles” (Whiteley, personal communication, 2000), but
by applying their observations of images that were controlled by onscreen
buttons. Many students showed that they appreciated the significance of
reflections in this sketch; nevertheless they were unable to construct a
satisfactory transformation-based explanation in answering the question.
For example, Katy states:

No but listen — the reflection — show the reflection. ... This triangle FCB is a
reflection of ABC. Therefore it has to be equal — equal because it’s a reflection.
(Katy and Bea, A/A, April 3, 2000)

Pat and Dave, working on the same problem have the following conversa-
tion:
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Pat: It breaks it apart. It helps you to see it better. Reference to
visual

Dave: This is the mirror Notes reflection
Pat: It breaks it apart so it’s easy to picture it.
Dave: They match. It matched it with the other one. Understands
congruency

Pat: It shows us that they’re congruent. . ..

Dave: The mirror effect shows that ABC’s just like
FCB.

(Pat and Dave, A/W, March 28, 2000)

In another example, a sketch allowed students to use rotation to explain
why two segments were equal, instead of deducing the result via a triangle
congruency proof. The question was: “How can the information provided
by these images be used to explain why DM equals BN?” (Day 2, task 1,
see Figure 3). Students intuitively understood that when the triangle was
rotated, DM would fall on BN. Clara briefly commented: “Because the
triangle fits — the triangle fits both,” however, she did not follow up with a
step-by-step analysis. She felt that the result needed no further explanation.

These impoverished conversations about transformations highlight stu-
dents’ unfamiliarity with describing visual information in precise terms.
The study students had worked on symmetry and transformations in earlier
grades, but most of the emphasis had been on recognising and reproducing
transformed shapes; the development of deductive proof had avoided trans-
formations completely. The experience of the study students is not atyp-
ical. Whiteley (1999) contends that many elementary and secondary school
programs ignore transformational reasoning leaving students unprepared
for the demands they will face in today’s visual world.

When we notice that the motion of two points suggests they are rota-
tions or reflections of one another, we are using transformation relation-
ships to organise dynamic visual information. Since transformations can
help us make sense of what we are viewing, they should be emphasised in
any dynamic task. However, questions and sketch must complement one
another. In the study sketches, transformation capabilities, while interest-
ing to students, were not as effective as I had hoped in helping students de-
velop their geometric skills because labsheet questions — and the students’
curriculum — emphasised Euclidean-based methods. If we want to encour-
age transformation-based approaches to working with dynamic sketches
methods must be developed to help students: 1) learn to use transformation
concepts to monitor how visual elements are changing in relation to one
another, and 2) develop facility in writing transformation-based proofs.
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Explaining

Every labsheet included questions that asked students to explain their reas-
oning, but responses were usually sparse. For example, in answering “Find
another pair of congruent triangles in the figure. Explain your reasoning”
(Day 1, task 1, see Figure 1) three students wrote the following:

Example 1:

AGBH and AGCH are two new congruent triangles that are formed. The per-
pendicular line forms a common side. [Note: the view in Figure 1does not show
point G. When the reflected triangles merge, point G is the intersection of AC and
AC ]

Example 2:
AABG = AFGC because
LABC = /FCB given [Note: this angle isn’t in AABG]
AB =FC given
/AGB = /FGC VOAT [Note: Vertically Opposite Angle Theorem]

Example 3:
ABGH = ACGH
Proof: GH=GH common
BH=HC right bisector
BG=CG ITT [Note: Isosceles Triangle Theorem]

When inviting questions asked for an explanation, students wrote more;
however, comments were always very general in nature. For example, in
response to “How can the information provided by these images be used to
explain why AABC is congruent to AFCB?]’ (Day 1, task 1, see Figure 1),
three students wrote as follows:

Example 1:

Both triangles have uneven sides (scalene). From the reflection in the mirror they
are both symmetrical. When AFBC is placed upon AABC they cover one another
exactly.
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Example 2:
The buttons do reverse images and try to place the triangles together. They fit so
they are congruent.

Example 3:
It breaks it into two diagrams so it is easy to picture it. The mirror effect shows
that it is the same triangle. It shows that it is exactly the same.

This tendency — to write very little, or to substitute traditional congruency
proofs for explanations suggest that the study students needed more prac-
tice developing explanations of their mathematical reasoning. However, it
is interesting to examine these answers from another perspective. I asked
students to ‘explain’ in order to check their understanding of the concepts.
Another very powerful incentive for an explanation is the need to commu-
nicate how you explored — to focus on process. Since students must learn
how to interpret visual information, and how to use change to explore,
perhaps this type of explanation is more valuable.

Avoiding trivial responses

Some questions on labsheets were more effective than others. For example,
the question, “What do you notice about the new triangle?” was too vague.
It resulted in conclusions such as the following:

Clara: It gets bigger and smaller.

Barb: It moves according to how you — It changes.
(Barb and Clara, VG/VG, Day 2, task 1, see Figure 3, March 29, 2000)

To avoid trivial responses, task developers can make questions more poin-
ted. However, closing the boundaries of a question often leads to a decline
in the cognitive demand of the task. The study students did offer trivial
responses, but I contend that instead of a simplification of the mathematics,
they needed explicit work on visual reasoning skills to help them focus on
details, follow chosen elements across the screen, and use transformation
concepts and other mathematical principles to organise information.

Sketch-Labsheet links

Study results show that the materials used in a geometry investigation
involving pre-constructed sketches strongly impact the student. If we ex-
amine each statement or question in a task in terms of its function we find
that some closely parallel the interventions used by a teacher. For example,
some instructions 'manage’ as a teacher would, some questions check for
understanding, and some invite, by asking students to investigate, explain,
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and explore more. I contend that labsheet statements also prompt, a cat-
egory that suggests guidance but avoids the idea of adaptation implicit in
a teacher’s response. Questions and instructions also focus student atten-
tion on various aspects of a sketch such as a measurement, a relationship
between sides or angles, or behaviour under dragging.

In order to facilitate exploration a sketch must provide the means to
address the questions and instructions. In general:

1. When a question aims to focus student attention, the sketch must provide
the visual stimulus. It must draw attention through colour, motion, and
markings.

2. When a statement prompts action, such as asking students to drag,
observe or deduce, the sketch must contain the necessary provisions.
It must provide affordances so that the student can take the required
steps.

3. Questions that invite exploration are open-ended. In order to explore
uncharted territory, the student requires a sketch that allows options.
Thus, when a question invites exploration, the sketch must provide
alternate paths.

4. A question can surprise — which may lead to further exploration; how-
ever, the teacher is not necessarily there to correct any misinterpret-
ation. Thus, the sketch must support experimentation to unmask the
confusion. It must be flexible enough to help students examine cases,
yet constrained enough to prevent frustration.

5. Questions that check understanding are important parts of any learning
situation. In the study tasks, the checking involved students looking
together for the answer. Although peer-interactions were not discussed
in this article, study results showed that the sketch aided this process
by providing a shared image for students to consider and discuss.

An important underlying thread must be a focus on provisions that will
help students learn how to use change to explore, and how to extend their
visual interpretation skills.

CONCLUSION

The activities for the study were designed to help students notice geomet-
ric details, explore relationships, and develop reasoning skills related to
geometric proof. I intended to focus solely on the mathematics but was
drawn by the data into an analysis of the interactions within the learning
environment between the students and the materials. In terms of the ma-
terials I initially considered the sketches to be far more important than the
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labsheets. However, an analysis of the data showed that task question and
sketch provision must work together to create an environment for explor-
ation. In addition, student responses clearly indicate that explicit attention
to visual interpretation and exploration using change is required in order
for students to benefit fully from their experiences with pre-constructed
dynamic geometry sketches.

I do not want to leave the reader with the impression that task materials
somehow act on their own in the learning environment. My aim in this art-
icle was to draw attention to the idea that pre-constructed dynamic sketches
(whether web-based or not) and the accompanying materials are central
elements of the learning activity of which they are a part, and therefore,
that decisions about their design have the potential to support or impede
the development of exploration strategies and geometric thinking skills.
An examination of student responses to particular questions in light of
visual and dynamic geometry research suggests that through the mater-
ials we may be able to improve the context in which students learn the
mathematics of dynamic geometry.
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APPENDIX A

Day 1 —Task 1

Jsketch2
1. Open Jsketch2.htm as described in the general instructions.
2. Notice that some points in the sketch are red. They are ‘draggable.’
e Drag each red point and observe the diagram.
Tip: If the sketch gets really messed up just click Reload in the tool
bar.

3. Click| Show Given Information |, Drag point A again and observe the

diagram. Explain the meaning of the tick marks and the angle shading.

4. Click each button on the top right. How can the information provided
by these images be used to explain why AABC is congruent to AFCB?

5. Use your observations and the appropriate congruency theorem (SSS,
SAS or ASA) to prove that AABC is congruent to AFCB.

6. Click| Show Perpendicular through H |. What additional information

can you deduce about point H from the diagram?

7. Find another pair of congruent triangles in the figure. Explain your
reasoning.
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Verlag, Berlin, Hiedelberg.

The Geometer’s Sketchpad: 1991, N. Jackiw, designer. [Software], Key Curriculum Press,
Berkeley, CA.

JavaSketchpad: 1998, N. Jackiw, designer. [Software, under development], Key Cur-
riculum Press, Berkeley, CA.
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