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Our study concerns the conceptual mathematical knowledge that emerges 
during the resolution of tasks on the equivalence of polynomial and rational 
algebraic expressions, by using CAS and paper-and-pencil techniques. Our 
findings highlight the mathematical knowledge (technological discourse) 
constructed in the process of confronting, differentiating, and articulating 
the several mathematical praxeologies (pertaining to the numeric 
perspective or the syntactic perspective in algebraic equivalence) that arose 
in the solution of the designed equivalence tasks. 
INTRODUCTION AND BRIEF LITERATURE REVIEW  
While a substantial amount of research has been carried out with respect to 
the equivalence of algebraic expressions, very little of it has dealt explicitly 
with either the comparison of polynomial and rational expressions or the 
bridging of syntactic and numeric perspectives. Some researchers have 
highlighted the importance of being able to work flexibly with algebraic 
expressions in various forms and of recognizing equivalent expressions; 
other studies have focused on the difficulties that students encounter with 
understanding algebraic equivalence (see for example Nicaud et al.; 2004, 
Sackur et al., 1997; or Ball et al., 2003). 
With respect to the different perspectives, Cuoco (2002) distinguishes 
between polynomial functions and polynomial forms as follows. Polynomial 
functions involve thinking about the letter in a polynomial as a variable and 
about the polynomial as an input-output machine that can yield a table or a 
graph, and has all the attributes of real-valued functions of a real variable. In 
contrast, polynomial forms are viewed as formal expressions with the letter 
considered as an indeterminate and which involve operations such as 
factoring, adding, multiplying, and so on. However, according to Cuoco “the 
distinctions between polynomial forms and functions tend to be ignored in 
school mathematics” (2002, p. 297). Cerulli and Mariotti (2002) make 
similar distinctions in what they refer to as functional and axiomatic 
definitions of equivalence. They point out that since, for polynomials in n 



variables, the functional and the axiomatic definitions are equivalent, they 
do not go into the particularities of the equivalence of these definitions with 
their learners. 
Artigue (2002) has drawn on students’ work involving the passage from one 
given form of algebraic expression to another to illustrate the difficulties that 
students experience with equivalence problems, difficulties that come to the 
fore when they use Computer Algebra Systems (CAS) (e.g., Artigue, 2002; 
Guin & Trouche, 1999; Lagrange, 2000). She asserts that the CAS forces 
students to confront issues of equivalence and simplification in ways that are 
not so easily achieved in more traditional, paper-and-pencil, treatments. 
Following Artigue´s considerations, Kieran and Drijvers (2006) and Kieran 
and Saldanha (2008) have investigated the learning of the technical and 
theoretical aspects of various topics in high school algebra within CAS 
environments, including the topic of equivalence. They have found that 
“students linked the notion of restrictions [within the rational expressions] to 
the numerical view on equivalence” (Kieran & Drijvers, 2006, pp. 227-231). 
While the distinctions between form and function are particularly important 
when students use CAS technology to solve equivalence tasks because the 
polynomial-form perspective underlies CAS – even if it also deals with 
polynomials as functions – many crucial questions regarding the articulation 
of the syntactic and numeric perspectives could not be answered by the 
classroom-based study reported by Kieran and Drijvers. The present article 
deals exactly with such articulation, within the methodological frame of 
individual-based student interviews. 
THEORETICAL FRAMEWORK 
As in previous studies (e.g., Kieran & Drijvers, 2006), we adopt the 
Anthropological Theory of Didactics (ATD) developed by Chevallard 
(1999). As per this theory, the objects of mathematical knowledge emerge 
from systems of practices whose norms and manners of use define the ways 
of knowing and understanding these objects and their way of living in 
specific institutions. These systems are named mathematical praxeologies in 
Chevallard’s theory and they are described by: the types of tasks in which 
the objects of knowledge are immersed; the techniques or ways of solution 
of these tasks; the discourse that explains and justifies the techniques, named 
technology; and the theory that provides the structural basis of the 
technological discourse and that can be seen as the “technology of the 
technology” (Artigue, 2002, p. 248). 



In this study we focus on the co-emergence of techniques and conceptual 
mathematical knowledge when solving equivalence tasks. We share the 
point of view of Lagrange (2000, p. 16), who affirms that techniques 
develop mathematical meaning in a double relationship with, on the one 
hand, the tasks they permit the user to solve, and, on the other, the 
theorizations they promote. In accordance with Lagrange, Artigue (2002) 
states that techniques are usually recognized by their pragmatic value for 
task solution, in other words, in terms of their efficacy, cost, and validity 
domain. However, techniques also have an essential epistemic value as they 
contribute to the understanding of the objects they handle. 
METHODOLOGICAL CONSIDERATIONS 
The study presented herein is part of a larger program of research whose 
central objective was to shed light on the co-emergence of algebraic 
technique and theory within an environment involving novel tasks and a 
combination of Computer Algebra System (CAS) and paper-and-pencil (PP) 
media (see Kieran & Drijvers, 2006). With this objective and our theoretical 
perspective in mind, for this study our research team developed a series of 
task sequences on equivalence, within an environment involving both paper-
and-pencil and CAS (the TI-92 Plus handheld calculator), that would 
encourage both technical and theoretical development (Chevallard, 1999, 
Artigue, 2002, and Lagrange, 2000) in 10th grade algebra students.  
For the design of tasks, we consider algebraic expressions that are 
polynomials and polynomial quotients in one indeterminate with coefficients 
on the set of real numbers R. If we see algebraic expressions as polynomials 
or polynomial quotients, we will say that two expressions are equivalent 
from the syntactic perspective when they have a common algebraic 
rewriting by applying the properties of the algebraic properties of 
polynomial and polynomial quotients operations. If we see algebraic 
expressions as polynomial functions, we will say that two algebraic 
expressions f and g are equivalent from the numeric perspective when have 
the same values for all x in the common domain. The two perspectives of 
equivalence emphasize different aspects. For the numeric perspective, it is 
essential to include the study of the characteristics of domains and images 
for the corresponding algebraic expressions being compared. For the 
syntactic perspective, the rewriting of expressions plays a central role. On 
the basis of the algebraic properties of the operations of the ring of 
polynomials and the field of quotients of polynomials, the rewriting of 
expressions allows for verifying equivalence and for obtaining equivalent 
expressions.  



The research program includes data collection of classroom lessons and 
videotaped interviews with students. The analysis presented in this article is 
based on the first of three interviews carried out with one Grade 10 algebra 
student, Andrew. At the moment of the interview, Andrew had already 
learned the four basic operations with polynomials, and a few techniques for 
factoring certain binomials and trinomials, and for solving linear and 
quadratic equations. He had not yet had any formal school experience with 
the notion of equivalence, nor with rational algebraic expressions, but he had 
studied the introductory topics of domain and range, dependence, relation 
versus function, and modes of representation. Andrew had also been 
introduced to CAS technology.  
In Table 1 we present the expressions used in the interview of this study. 

Expression	
  A:	
  	
  	
   )123)(20( 22 −+−+ xxxx 	
  

Expression	
  B:	
  	
  	
   )5)(2)(13( 2 +−−− xxxx 	
  
Expression	
  C:	
  	
  

Table	
  1:	
  Designed	
  expressions	
  for	
  this	
  study	
  

ANALYSIS 
The first part of the interview consisted of evaluating the given algebraic 
expressions and producing a conjecture regarding the numerical 
relationships among the obtained values. Andrew evaluated the expressions 
for x = 1/3, -5, 6, 7, and conjectured: The results for Expressions B and C 
would continue to be equal to each other. In our theoretical terms, we can 
say that he conjectured the numeric equivalence of Expressions B and C. 
When asked to justify his conjecture “for all numbers”, he resorted to 
syntactic techniques: he expanded (with paper and pencil and with CAS) and 
factored the expressions so as to obtain "forms" that he could compare. So, 
if the rewriting of the expressions (obtained by expansion or by 
factorization) is the same, then they take on the same values for any x (in our 
theoretical terms: if they are syntactically equivalent, then they are 
numerically equivalent). Table 2 shows the expanded and factored forms 
obtained by Andrew just as he wrote them. 

Original	
  expression	
   Expanded	
  form	
   Factored	
  form	
  
)123)(20( 22 −+−+ xxxx 	
   20415953 234 +−−+ xxxx

	
  
))13)(1))((4)(5(( −+−+ xxxx

	
  
)5)(2)(13( 2 +−−− xxxx 	
   102325113 234 +−−+ xxxx

	
  
))5)(1)(2)((13( ++−− xxxx 	
  

)2(
)23)(13)(103( 22

+
++−−+

x
xxxxx



)2(
)23)(13)(103( 22

+
++−−+

x
xxxxx

	
   102325113 234 +−−+ xxxx
	
  

)1)(13)(5)(2( +−+− xxxx 	
  

Table	
  2:	
  Andrew’s	
  expanded	
  and	
  factored	
  forms	
  

It is important to say that just a few students of the whole research program 
used syntactic techniques for justifying their conjectures for the numeric 
equivalence of expressions. Most of them “felt unsure about algebra 
providing certainty about numerical values, even if their algebraic skills 
were good” (Kieran & Drijvers, 2006, p. 222). 
The interview continued, with Andrew being asked to find the domain of 
definition for Expression C: 
Interviewer:  Is there any value of x that would not be permissible as a 

replacement value for x in Expressions B and C? 

Andrew concluded that Expression C was not defined for x = -2. Then he 
was asked about the consequences of this non-definition with respect to the 
equivalence of Expressions B and C. Andrew answered as follows: 
Andrew:  Well just, it [the factorized form for Expression C, once the common 

factors are cancelled: )1)(13)(5)(2( +−+− xxxx ] is, like, another form 
of the expression, which is, I guess, once the expression is factored 
out, and then they’re still equal to each other. So, that makes sense 
[small laugh]. Basically, Expressions B and C, when they are fully 
factored, at least to my capability, they’re equal to each other, still. 
So, it just supports my conjecture that, with any x value, excluding 
negative 2, they would be equal to each other. 

In this first contact with the differences between the two perspectives on 
algebraic equivalence, Andrew incorporated the restriction as an exception 
to the equality of the values of the expressions: although these expressions 
are syntactically equivalent (they can be rewritten as the same expression), 
there is a value of x for which they are not equal. 
Straightaway, Andrew spontaneously proceeded to evaluate at x = -2 the 
expressions syntactically equivalent to Expression C. Table 3 shows the 
results that he obtained. 
Expression	
   Value	
  at	
  x	
  =	
  -­‐2	
  

Expression	
  C:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  

Undefined	
  
	
  
	
  

Expression	
  B:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   )5)(2)(13( 2 +−−− xxxx 	
   -­‐84	
  

)2(
)23)(13)(103( 22

+
++−−+

x
xxxxx



Expanded	
  form	
  of	
  
expressions	
  B	
  and	
  C,	
  
obtained	
  by	
  using	
  CAS:	
  	
  	
  	
  	
  	
  	
  	
  	
  

102325113 234 +−−+ xxxx 	
   -­‐84	
  

Factored	
  form	
  of	
  
expressions	
  B	
  and	
  C,	
  
obtained	
  by	
  using	
  PP:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

)1)(13)(5)(2( +−+− xxxx 	
  

(-­‐84)	
  Andrew	
  considered	
  
this	
  evaluation,	
  but	
  did	
  
not	
  explicitly	
  carry	
  it	
  out	
  
during	
  the	
  interview.	
  

Table	
  3:	
  CAS	
  evaluation	
  of	
  the	
  expressions	
  equivalent	
  to	
  Expression	
  C	
  (at	
  x	
  =	
  -­‐2)	
  

This evaluation performed by Andrew was not considered in the original 
design of the interview. It was a spontaneous confrontation of the different 
facts that support the numeric equivalence of Expressions B and C versus 
the fact that these expressions take on different values at the restriction. At 
the same time, this evaluation was an exploration of the possibility that the 
restriction is inherited by the syntactically equivalent forms and, thus, if the 
equality of the values could be kept for x = -2. In Andrew’s words “it is very 
possible that if I work this [expression B] out, with minus two incorporated 
into it, that that would equal zero too, which is based on the fact that they 
[expressions B and C] have always been equivalent”. 
The interview continued with some tasks that required Andrew to confront 
the differences between the two perspectives on algebraic equivalence. For 
the solution of these tasks we introduced two CAS techniques: the 
equivalence test and the numeric equality test. These techniques allowed him 
to determine the equivalence of two expressions. In the case of expressions 
that are syntactically equivalent but which have a restriction (like 
Expressions B and C), the results obtained by applying the equivalence and 
the numeric equality tests are “contradictory”. For the restriction  
(x = -2), when using the numeric equality test, the result that is obtained is 
FALSE; whereas when using the equivalence test, the result is TRUE. 
The contradictory results obtained for Expressions B and C confirmed what 
Andrew had already obtained by applying the factoring and expanding 
techniques, with and without CAS. As Andrew said, the CAS was not 
considering the domain restriction of Expression C. Andrew explained the 
results as follows: 
Andrew:  Yeah, at first [he is referring to the result of the test of equivalence] 

it’s saying that any value of x would be true, that any value of x can 
be substituted and they would be equivalent. But, like this just 
proves, that when minus two is incorporated that it’s not true [he is 
referring to the result of the test of numeric equality for x = -2], in 



this form at least [original expression C]. Because once it’s 
expanded, it [the calculator] saw they were still equivalent, and it 
didn’t. I guess in different forms it’s not true, but in this particular 
form [original expression C] it is. 

Throughout the interview Andrew managed to construct an articulation 
between the differences and contradictions of the results obtained through 
the syntactic and numeric techniques: the numeric equivalence of two 
algebraic expressions could be established in a general manner (for every 
value of x, not just for a finite set of values) by means of syntactic 
techniques, both using paper and pencil and CAS. For example, through 
expanding and factoring techniques, Expressions B and C could be rewritten 
as the same expression. However, numeric equivalence requires considering 
the restrictions. At the domain restriction for Expression C, these 
expressions do not have the same value. Table 4 presents a theoretical 
analysis of the techniques and the technological discourses articulated by 
Andrew. 

	
   Numeric	
  perspective	
   Syntactic	
  perspective	
  

Ty
pe
	
  o
f	
  

ta
sk
	
   Establishing	
  the	
  equivalence	
  of	
  rational	
  expressions	
  (with	
  remainder	
  equal	
  

to	
  zero)	
  and	
  polynomial	
  expressions.	
  

Te
ch
ni
qu
e	
  

Establish	
  the	
  common	
  domain	
  of	
  
the	
  expressions,	
  i.e.,	
  determine	
  the	
  
restrictions.	
  Compare	
  the	
  
expressions	
  over	
  the	
  common	
  
domain.	
  	
  
Evaluate	
  the	
  expressions	
  for	
  
several	
  values	
  of	
  the	
  common	
  
domain.	
  	
  

Rewrite	
  the	
  expressions	
  in	
  a	
  common	
  
algebraic	
  form,	
  in	
  a	
  factorized	
  or	
  
expanded	
  form.	
  
Compare	
  the	
  rewritten	
  expressions	
  
(term	
  by	
  term	
  or	
  factor	
  by	
  factor).	
  

Te
ch
no
lo
gy
	
  

If	
  the	
  expressions	
  take	
  on	
  the	
  same	
  
values	
  for	
  a	
  set	
  of	
  values,	
  they	
  can	
  
take	
  on	
  the	
  same	
  values	
  for	
  any	
  
value	
  of	
  the	
  common	
  domain	
  (their	
  
numeric	
  equivalence	
  is	
  
conjectured).	
  

If	
  the	
  expressions	
  can	
  be	
  rewritten	
  as	
  
the	
  same	
  expression	
  (in	
  a	
  factorized	
  
or	
  expanded	
  form),	
  they	
  are	
  
syntactically	
  equivalent.	
  

Table	
  4:	
  Numeric	
  and	
  syntactic	
  perspectives	
  for	
  determining	
  the	
  equivalence	
  of	
  
rational	
  expressions	
  (with	
  remainder	
  equal	
  to	
  zero)	
  and	
  polynomial	
  expressions	
  

DISCUSSION 
Andrew resorted to techniques belonging to different mathematical 
praxeologies and to different perspectives on algebraic equivalence. 
Syntactic techniques and technologies used by Andrew belong to two well-



distinguishable praxeologies: the Expansion praxeology and the 
Factorization praxeology. The third praxeology involved in Andrew’s 
solutions is determined by the evaluation technique, which corresponds to 
the numerical perspective of equivalence. We call it the Evaluation 
praxeology. 
For Andrew the applied techniques do not belong exclusively to a unique 
perspective. In fact, for him, differentiated perspectives on equivalence do 
not exist. They are just mathematical knowledge and resources for solving 
the same type of tasks. Andrew articulated the differences and contradictions 
by establishing distinctions between the numeric and the syntactic 
techniques, as well as between their corresponding conceptual elements 
(technologies): numeric equivalence of algebraic expressions can be 
“proved” by rewriting them and showing that they are the same (syntactic 
equivalence). However, at the restrictions (numerical values of x where the 
rational expressions are not defined), numeric equivalence does not 
correspond to the syntactic equivalence of the expressions; numerical 
evaluation is necessary in this case. 
The use of CAS was central to the exploration of the values of the 
expressions; its pragmatic value (Lagrange, 2000) was given relevance 
through this use. CAS was central also for making explicit the differences 
and their conciliation; it thereby acquired an epistemic value through the 
constitution of the technological discourses for explaining and conciliating 
the “contradictions” that emerged during the solution of the tasks. 
Clearly, the articulation of the two perspectives on algebraic equivalence 
was not completed by the theoretical and technological explanations 
generated through the solution of the set of tasks presented in this study. For 
instance, certain issues related to restrictions, zeros, and factors of 
polynomials were not explained nor even dealt with. However, the design of 
tasks that involved confronting and differentiating perspectives of 
equivalence allowed for the creation of a mathematical arena where 
mathematical knowledge about algebraic expressions and their equivalence 
(the mathematical praxeologies involved) is articulated and, in this way, 
constructed. 
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