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This article is divided into four parts. The first part presents some introductory 
remarks on the use of Computer Algebra System (CAS) technology in relation 
to the long-standing dichotomy in algebra between procedures and concepts. 
The second part explores the technical-conceptual interface in algebraic activity 
and discusses what is meant by conceptual (theoretical) understanding of 
algebraic technique – in other words, what it means to render conceptual the 
technical aspects of algebra. Examples to be touched upon include seeing 
through symbols, becoming aware of underlying forms, and conceptualizing the 
equivalence of the factored and expanded forms of algebraic expressions. The 
ways in which students learned to draw such conceptual aspects from their 
work with algebraic techniques in technology environments is the focus of the 
third part of the article. Research studies that have been carried out by my 
research group1 with a range of high school algebra students have found 
evidence for the kinds of theoretical thinking that can be fostered by specific 
types of technique-oriented tasks within CAS environments. The fourth part of 
the article then shifts to the perspective of teaching practice and discusses 
some of the issues that, according to this research, are to be taken into account 
by teachers when planning for the orchestration of such task-technique-theory 
activity in technological environments. 
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1. Introduction 
1.1  What is Computer Algebra System (CAS) technology? 
A Computer Algebra System (CAS) is a software program that facilitates symbolic 
mathematics. The core functionality of a CAS is manipulation of mathematical expressions 
in symbolic form (Wikipedia, Sept. 5, 2007). In 1987, Hewlett-Packard introduced the first 
hand-held CAS calculator with the HP-28 series, and it became possible, for the first time 
with a calculator, to arrange algebraic expressions, to differentiate, to do limited symbolic 
integration and Taylor series construction, and to solve algebraic equations. The Texas 
Instruments company in 1995 released the TI-92 calculator with an advanced CAS, based 
                                                
1 My appreciation to the colleagues, post-doctoral fellows, and collaborators who have contributed to the research being 
presented in this article: André Boileau, Caroline Damboise, Paul Drijvers, José Guzmán, Fernando Hitt, Ana Isabel 
Sacristán, Luis Saldanha, and Denis Tanguay – as well as the teachers and students of the participating schools, and 
our project consultant, Michèle Artigue. I also express my gratitude to the Social Sciences and Humanities Research 
Council of Canada and the Québec Ministère des Relations Internationales who have funded this research. 
 



on the software Derive. This calculator, and its successors (including TI-89, Voyage 200, 
and TI-Nspire), have featured a reasonably capable and relatively inexpensive hand-held 
Computer Algebra System with symbolic, graphical, and tabular capabilities. 
1.2 CAS use in secondary school mathematics classes 
Ever since the appearance of computers and calculators enabled with symbol-
manipulating capabilities, educators have considered these tools to be quite appropriate 
for student use in college-level mathematics courses, and in calculus courses offered at 
some upper-level high schools (see, e.g., Heid, 1988; Shaw, Jean, & Peck, 1997; Zbiek, 
2003). However, these tools have generally not been adopted for secondary school 
mathematics up until quite recently. Many secondary school mathematics teachers have, 
for several years, tended to stay away from CAS technology in their classrooms, preferring 
that their students first develop paper-and-pencil skills in algebra (National Council of 
Teachers of Mathematics, 1999).  

However, these attitudes are changing – based both on research findings and on 
the leadership of interested teachers and mathematics educators, as well as on the 
greater availability of teacher resources for using this technology at the Grade 9, 10, and 
11 levels of secondary school. The result is that student access to this technology is 
increasing in schools (Hoyles & Lagrange, 2009). 
1.3 What does the research have to say? 
CAS technology has been found to encourage the use of general mathematical reasoning 
processes and to improve student attitude, according to research reported during the five- 
year period from 2003 to 2008 at the annual conferences of the International Group for the 
Psychology of Mathematics Education (PME): 

*  “It allows for generating, testing, and improving conjectures” 
*  “It allows for developing awareness and intuition” 
*  “It leads students to explore their own conjectures” 
* “It provides non-judgmental feedback” 
*  “It develops the learner’s confidence.” 
This research has also found that CAS can help develop students’ knowledge of 

algebraic content: their understanding of equivalence (Ball, Pierce, & Stacey, 2003), 
parameters and variables (Drijvers, 2003), and literal-symbolic algebraic objects in 
general, without “leading to the atrophy of by-hand symbolic-manipulation skills or to the 
slower development of these skills” (Heid, Blume, Hollebrands, & Piez, 2002, p. 586). 

Since the mid-1990s, in France, when CAS technology started to make its 
appearance in secondary school mathematics classes, researchers (Artigue, Defouad, 
Duperier, Juge, & Lagrange, 1998) noticed that teachers were emphasizing the conceptual 
dimensions while neglecting the role of the technical work in algebra learning. However, 
this emphasis on conceptual work was producing neither a clear lightening of the technical 
aspects of the work nor a definite enhancement of students’ conceptual reflection 
(Lagrange, 1996). From their observations, the research team of Artigue and her 
collaborators came to think of techniques as a link between tasks and conceptual 
reflection, in other words, that the learning of techniques was vital to related conceptual 
thinking. The implication of these findings, as Michèle Artigue stated in her plenary 
presentation at this ICME-11 conference (Artigue, 2008), is that the dichotomy between 
techniques and concepts in algebra is a false one. It is argued not only that the two are 



complementary, but also that, within appropriate learning environments, techniques and 
concepts co-emerge and mutually support each other’s growth. 
1.4 The Task-Technique-Theory framework 
Chevallard describes four components of practice by which mathematical objects are 
brought into play within didactic institutions: task, technique, technology, and theory. 
Chevallard (1999, p. 225) states that tasks are normally expressed in terms of verbs, for 
example, “multiply the given algebraic expression.” He defines technique as “a way of 
accomplishing, of carrying out tasks.” In his theory, Chevallard separates technique from 
the discourse that justifies/explains/produces it, which he refers to as technology. But he 
also admits that this type of discourse is often integrated into technique, and points out 
that such technique can be characterized in terms of theoretical progress. According to 
Chevallard, theory takes the form of abstract speculation, a distancing from the empirical. 
Thus, within the anthropological approach, discourse can be viewed as bridging technique 
and theory. 

Artigue (2002a) and her research collaborators adapted Chevallard’s 
anthropological theory by collapsing technology and theory into the one term, theory. This 
gave the theoretical component a wider interpretation than is usual in the anthropological 
approach; it also reserved the use of the term technology for digital devices. Furthermore, 
Artigue (2002a, p. 248) has emphasized that technique also has to be given a wider 
meaning than is usual in educational discourse: “A technique is a manner of solving a task 
and, as soon as one goes beyond the body of routine tasks for a given institution, each 
technique is a complex assembly of reasoning and routine work.”  

Lagrange (2002, p. 163), one of Artigue’s collaborators, has expressed the 
interrelationship of task, technique, and theory as follows: 

Within this dynamic, tasks are first of all problems. Techniques become elaborated 
relative to tasks, then become hierarchically differentiated. Official techniques 
emerge and tasks lose their problematic character: tasks become routinized, the 
means to perfect techniques. The theoretical environment takes techniques into 
account – their functioning and their limits. Then the techniques themselves become 
routinized to ensure the production of results useful to mathematical activity. … Thus, 
technique has a pragmatic role that permits the production of results; but it also plays 
an epistemic role (Rabardel and Samurçay, 2001) in that it constitutes understanding 
of objects and is the source of new questions.  [my translation] 

Elsewhere, Lagrange (2003, p. 271) has further extended this latter idea:  “Technique 
plays an epistemic role by contributing to an understanding of the objects that it handles, 
particularly during its elaboration. It also serves as an object for a conceptual reflection 
when compared with other techniques and when discussed with regard to consistency.” 

Our research group was intrigued by the theoretical notion that algebra learning at 
the high school level might be conceptualized in terms of a dynamic among Task-
Technique-Theory (T-T-T) within technological environments. And so it came to be that we 
began a series of studies in 2002, which continue to this day, that explored the relations 
among task, technique, and theory in the algebra learning (and teaching) of Grades 10, 
11, and 12 students (15-18 years of age) in CAS environments. I will be elaborating on 
aspects of this research in a short while; nevertheless, I summarize briefly here our main 
findings so as to situate my underlying theme. 



As reported in Kieran and Drijvers (2006), technique and theory emerged in mutual 
interaction. Techniques gave rise to theoretical thinking; and the other way around, 
theoretical reflections led students to develop and use techniques. 

As reported in Kieran and Damboise (2007), a comparative study of a CAS class 
and non-CAS class involving the same tasks, the CAS class improved much more than the 
non-CAS class in both technique and theory, but especially in theory; and the sequence of 
lessons was one where the technical component was clearly in the forefront. 

This brings us to the main question to be addressed in this paper: How does the 
learning of algebraic technique in a CAS environment lead to the emergence of students’ 
theoretical/conceptual growth? In other words, how is technique rendered conceptual? 
What does it mean to have a conceptual understanding of algebraic technique? 
2. The interface between technique and theory in algebra 
Note that, within this text, I will be using the terms conceptual and theoretical 
interchangeably. I also wish to point out that the context of this article is related to the 
letter-symbolic aspects of algebra. There are two reasons for this. On the one hand, a 
great deal of research exists already with respect to the benefits of multi-representational 
approaches (e.g., graphical representations) in making algebraic objects more meaningful 
to students (Kieran & Yerushalmy, 2004). On the other hand, algebra involves more than 
representational activity; symbolic transformational activity lies at its core. However, the 
amount of research related to the ways in which the literal-symbolic transformational 
activity of algebra can be viewed as being conceptual is limited, to say the least. 
2.1  What is meant by a conceptual understanding of algebraic technique? 
I propose that a conceptual understanding of algebraic technique includes: 

*  Being able to see a certain form in algebraic expressions and equations, such 
as a linear or quadratic form; 

*  Being able to see relationships, such as the equivalence between factored and 
expanded expressions; 

*  Being able to see through algebraic transformations (the technical aspect) to 
the underlying changes in form of the algebraic object and being able to 
explain/justify these changes.  

Some classic examples of conceptual understandings in algebra include: (a) the 
distinctions between variables and parameters, between identities and equations, between 
mathematical variables and programming variables, and so on; as well as (b) the 
knowledge of the objects to which the algebraic language refers (generally numbers and 
the operations on them) and the need to include certain semantic aspects of the 
mathematical context so as to be able to interpret the objects being treated. But these 
classic examples deal more with objects than with techniques.  
2.2  Some examples of a conceptual understanding of algebraic technique 
Example 1.  Seeing through symbols to the underlying forms, e.g., 
     (a)  seeing x6 - 1 as ((x3)2 - 1) and as ((x2)3 - 1), 
                 and so being able to factor it in two ways. 
        (b)  seeing that x2+5x+6 and x4+7x2+10 
                         are both of the form ax2+bx+c. 
Example 2.  Conceptualizing the equivalence of the factored and expanded forms of 

algebraic expressions, e.g., awareness that the same numerical substitution 



(not a restricted value) in each step of the transformation process of 
expanding will yield the same value:   

   (x+1)(x+2) – factored form –  
                 = x(x+2) + 1(x+2) 
                = x2 + 2x + x + 2 
   = x2 + 3x + 2 – expanded form – 

 and so substituting, say 3, into all four expressions produces the same 
numerical result – in this case, 20 – for each expression. 

Example 3.  Coordinating the “nature” of equation solution(s) with the equivalence relation 
between the two expressions that comprise the original equation, e.g., for the 
following task,  

Given the three expressions: x(x2-9), (x+3)(x2-3x)-3x-3, (x2-3x)(x+3), 
(a) determine which of these three expressions are equivalent; 
(b) construct an equation using one pair of the above expressions that 

are not equivalent, and find its solution; 
(c) construct an equation from another pair of the above expressions 

that are not equivalent and, by logical reasoning only, determine its 
solution. 

So, for the three given expressions, 
Exp1: x(x2-9)  
Exp2: (x+3)(x2-3x)-3x-3  
Exp3: (x2-3x)(x+3) 
(a) Which are equivalent? 
 Only Exp1 and Exp3 are equivalent. 
(b) An equation using a pair of non-equivalent expressions from the 

three given expressions? And its solution?  
 One could use Exp1 and Exp2 in the equation: Exp1 = Exp2. 
 Its solution (with CAS or with paper and pencil): x = -1. 
(c) An equation from another pair of non-equivalent expressions from 

the above three expressions? And its solution (by logical reasoning 
only)? 

 This time, one uses Exp3 and Exp2 in the equation: Exp3 = Exp2. 
 One deduces that the solution has to be the same as in (b): (x = -1).  

(A conceptual/theoretical understanding involving substitution of 
equivalent expressions and transitivity leads to this deduction.) 

2.3 The importance of fostering a conceptual understanding of algebraic technique 
Having just seen some examples of what is intended by the phrase, a conceptual 
understanding of algebraic technique, I now argue, briefly, for the importance of this aim 
for algebra instruction.  

National and international mathematics assessments during the 1980s and 1990s 
reported that secondary school students, in order to cover their lack of understanding, 
resorted to memorizing rules and procedures and that students eventually came to believe 
that this activity represented the essence of algebra (e.g., Brown, Carpenter, Kouba, 
Lindquist, Silver, & Swafford, 1988). 

Although some of the recent reform movements have attempted to make algebra 
more meaningful for students – at least during the earlier years of high school – by infusing 
“real-world” problem-solving activities and multiple representations of these problems into 



algebra curricula, these same curricula have tended to maintain the traditional dichotomy 
of procedures and concepts when dealing with the transformational activity of algebra in 
the later years of high school. When students are then faced with the literal-symbolic 
transformational activity of algebra, it is presented, by and large, as a primarily concept-
free domain.  

Although Skemp (1976) described “relational understanding” as knowing both the 
rules and why they work, there has never been much movement in the direction of 
describing what this might mean for algebra. 

The point I wish to make is that this dichotomy between procedures and concepts in 
algebra is both unnecessary and unproductive for students, and in fact can lead to 
depriving them of the conceptual insights that can make their work with procedures 
meaningful. But before looking at how techniques can be approached so that the 
conceptual component might co-emerge along with the technical, we need first to consider 
the issue of tasks. 
2.4 The role of tasks in the T-T-T triad 
At a recent PME Research Forum on “The Significance of Task Design in Mathematics 
Education”, Ainley and Pratt (2005) – the organizers of the Forum – argued that, “We see 
task design as a crucial element of the learning environment … [and contend that] the 
nature of the task influences the activity of students.” Hoyles (2002) has emphasized that a 
focus on the design of task situations is at the heart of the “transformative potential of 
[technological] tools in activities” and that, with this focus, “knowledge and epistemology 
are brought back to center stage” (p. 284). Lagrange (1999) has suggested that task 
situations ought to be created in such a way as to “bring about a better comprehension of 
mathematical content” (p. 63) via the progressive acquisition of techniques in the 
achievement of a solution to the task. Guin and Trouche (1999) have added that tasks 
should aim at fostering experimental work (investigation and anticipation).  

More specifically, Drijvers (2003) has pointed out that more attention needs to be 
paid to the role of paper-and-pencil work throughout CAS task activity. For Hitt and Kieran 
(2009), a main consideration in task design is the nature of the theorizing that is to be 
elicited by the specific tasks and techniques of a teaching sequence.  Artigue (2002b) has 
suggested that CAS tasks can capitalize on “the surprise effect that can occur when one 
obtains results that do not conform to expectations and that can destabilize erroneous 
conceptions, as well as on the multiplicity of results that can be obtained in a short space 
of time when exploring and trying to understand a certain phenomenon” (p. 344, my 
translation). Zehavi and Mann (2003) have described how the tasks they developed had 
the potential to intertwine student work, CAS performance, and student reflection. Ball and 
Stacey (2003) have argued that students’ written task records ought to focus principally on 
the reasoning that has been evoked. 

As is suggested by all of the above studies – research that has involved 
mathematical activity within technology environments – there is an undeniable importance 
accorded to the design of tasks, tasks whose goal is to promote conceptual reflection and 
development, even in technique-oriented work! Absent are task sequences whose main 
purpose is for students simply to provide answers to procedural questions. 
2.5 To sum up 
Because of the (a) recent advances in the development of theoretical frameworks, such as 
that of Task-Technique-Theory, (b) increasing use of technology in schools, for example, 



CAS at the secondary school level, and (c) attention being paid to the role that the nature 
of the task/situation plays in students’ mathematical learning, we are well poised to make 
headway in reflecting upon the ways in which technique can be viewed from a conceptual 
angle in the teaching and learning of algebra and, in fact, how technology can enhance the 
conceptualizing of technique. 
3. How 10th grade students in our project drew conceptual aspects from their 
work with algebraic techniques in a CAS environment 
Two preliminary remarks are in order, the first concerning the tasks, the second 
concerning the technologies. With respect to the tasks: The tasks went beyond merely 
asking technique-oriented questions; the tasks also called upon general mathematical 
processes that included observing/focusing, predicting, reflecting, verifying, explaining, 
conjecturing, justifying. With respect to the technologies: Both CAS and paper-and-pencil 
were used, often with requests to coordinate the two; in general, the CAS provided the 
data upon which students formulated conjectures and arrived at provisional conclusions. 
3.1 Conceptualizing that emerged while learning new techniques with the aid of CAS 

technology 
The examples in this section are drawn from Kieran and Drijvers (2006) and Hitt and 
Kieran (2009). The two-lesson task-sequence was related to factoring (adapted from 
Mounier & Aldon, 1996). It involved the family of expressions, xn – 1. The aim of the task 
sequence was to arrive at a general form of factorization for xn - 1 (for integer values of n 
≥2) and then to relate this to the complete factorization of particular cases for integer 
values of n from 2 to 13. Proving one of these cases was part of the sequence, but is not 
included in this article (for details on the proving component and its unfolding in class, see 
Kieran & Guzmán, 2010). 

One of the initial tasks of the sequence involved the following questions, which have 
been compressed for this article into Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Some of the initial task questions of the xn - 1 sequence. 
 



After students had worked on these questions, either in groups or individually, the 
teacher opened up a whole-class discussion and asked students to state their responses 
to one particular question (Question #4 of Figure 1). Different students noticed different 
things in the pattern of expressions. The teacher’s aim in having the whole-class 
discussion was to encourage students to learn from what some of their peers had noticed. 
Figures 2 and 3 provide some samples of their responses to the given question. (As an 
aside: the issue of what students notice when doing exploratory mathematical work with 
technology is one that has received little research attention.) 

The particular student whose work is shown in Figure 2 focused on the     

! 

(x "1)  in the 
factored form and on the exponent in the expanded form. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. For this question, this student focused on the (x-1) and the exponents. 

 
The student whose work is displayed in Figure 3 helped others to “refine their 

noticing” when she described during the whole-class discussion what she had focused on. 
She noticed more than did some other students and was also able to express herself with 
a certain clarity – even if she misused terminology. Linguistic imprecisions such as this 
one, where equation was used for factor, were a common occurrence among the students 
in the classes we observed.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. This student helped others in the class to “refine their noticing”. 
 

The class then moved on to a general form of factorization for xn-1 based on the 
above prior examples: xn - 1 = (x-1)(xn-1+xn-2 + … x+1) (see Sacristán & Kieran, 2006, for 
student work related to this component of the task sequence). After arriving at this general 
form, the students worked on the Factorization Task where they were confronted with the 



completely factored forms produced by the CAS and where they were requested to 
reconcile their paper-and-pencil (p/p) factorizations with those produced by the CAS. One 
of the ways in which students attempted to reconcile their expected factorization of, for 
example, x4-1 with the CAS factorization is suggested by the work displayed in Figure 4. 
Here the student multiplied the 2nd and 3rd CAS factors to yield the same second factor 
that she had obtained with paper and pencil. Other students reconciled their p/p and CAS 
productions either by factoring more completely their 2nd p/p factor or by asking the CAS to 
multiply its 2nd and 3rd factors so as to see whether that produced the same polynomial as 
their 2nd p/p factor. 

  
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Reconciling paper-and-pencil and CAS factorizations for x4-1. 
 

After completing the Factorization Task for n = 2 to 6 in xn - 1, students were 
presented with the Conjecture Task: “Conjecture, in general, for what numbers n will the 
factorization of xn-1: (i) contain exactly two factors? (ii) contain more than two factors? (iii) 
include (x+1) as a factor? Explain.”  The following pair of students, Chris and Peter, 
incorrectly conjectured that, for all odd ns, the complete factorization of xn-1 would contain 
exactly two factors (see Figure 5).  The last line of the transcript extract indicates the 
moment of surprise when their initial conjecture proved false (this extract is drawn from Hitt 
& Kieran, 2009). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. The role played by the CAS in disproving the initial false conjecture. 
 



The two students then began to wonder: If it is not the case that all odd ns produce 
exactly two factors when xn-1 is completely factored, then which ns will produce only two 
factors? The CAS allowed them to test a variety of values for n, including the extreme case 
of n = 99, which led to a first revision of their initial conjecture (see Figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. A first revision of their odd-number conjecture: Exclude multiples of 3. 
 

But they had not quite finished with their conjecturing, and testing of conjectures, 
with the CAS. In addition to eliminating multiples of 3 as possible values for n, they soon 
were able to eliminate multiples of 5 and 7 as well. Then one of them suggested trying x60 - 
1 because, as he said, “I think it has to do with how many numbers can go into it.” This led 
to the “eureka” moment: that n had to be a prime number in order for the complete 
factorization of xn-1 to contain exactly two factors.  

From these samples drawn from Chris and Peter’s activity, we have had a glimpse 
at the role that CAS technology, within a thought-provoking task sequence, can play in 
supporting algebraic conjecture-making and conjecture-refining – allowing these two 
students to focus their trials on certain multiples of the exponent, to try out extreme cases, 
… in short, to arrive at a new conceptualization of the factors for expressions from this 
family of polynomials – all this within an activity related to technical work on factoring.   
3.2 Further evidence for the emergence of theoretical/conceptual ideas arising 
from work with CAS techniques  
The second set of examples to be presented is pulled from a comparison study that we 
carried out with two classes of weak Grade 10 algebra students (Kieran & Damboise, 
2007). Some of the characteristics of the task and test design were as follows:  

*  A set of tasks was developed on the topic of factoring and expanding. 
*  Tasks were identical for the two classes except that, where one class was to 

use p/p only, the other class was to use CAS or a combination of CAS and p/p 
(see Figures 7 and 8 for an example of the parallel task-sets for each class).  

*  Some tasks were technique-oriented; others were theory-oriented. 
*  A pretest and posttest were also created with some questions being technical 

and others theoretical. 
Note that, in both task-sets of Figures 7 and 8, the technical is the focus of the first 

question; the theoretical is the focus of the second question with its four subparts. Note as 
well that, in the CAS version of Question 1, students are asked to enter onto their 
worksheet the output produced by the CAS, while in the non-CAS version they are to 
record their paper-and-pencil factorizations and expansions. (N.B.: The “dissected” form of 



the first column was one with which both classes were quite familiar by the time that they 
encountered this Activity.) 
 

 
Figure 7. One of the task-sets for the CAS class. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The parallel task-set for the non-CAS class. 
 

 
In this study, the technology was found to play several roles in the CAS class: 
*  It provoked discussion;  
*  It generated exact answers that could be scrutinized for structure and form;  
*  It helped students to verify their conjectures, as well as their paper-and-pencil 

responses;  

 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 (

! 

ax
2

+ bx + c ) 

1. Complete the table below by following the example at the beginning of the table. 

Given trinomial (in 

“dissected” form)  

Factored form Expanded form 

Example: 

     

! 

x
2 + (3+ 4)x + 3• 4  

! 

x
2 + (3+ 4)x + 3• 4  

= 

! 

x
2

+ 3x + 4x + 3• 4  

= 

! 

x(x + 3)+ 4(x + 3) 

= 

! 

(x + 3)(x + 4)

! 

 

 

! 

x
2

+ 7x +12  

(a) 

! 

x
2 + (5+ 6)x + 5•6    

(b) 

! 

x
2 + (3+ 5)x + 3•5    

(c) 

! 

x
2 + (4 + 6)x + 4 •6    

(d) 

! 

x
2 + (3+ 5)x + 3• 3   

(e) 

! 

x
2 + (3+ 4)x + 3•6    

2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 

2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 

factorable? 

2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 

it is factorable? Explain and give an example. 

2(d) How would you describe the relation between the factored form and the expanded form 

of the above trinomials in 1(a) – 1(c)? 

Activity 3 (CAS): Trinomials with positive coefficients and a = 1 (  

! 

ax
2

+ bx +c ) 

1. Use the calculator in completing the table below. 

Given trinomial (in “dissected” 

for m )  

Factored form using FACTOR  Expanded form using EXPAN D  

(a)   

! 

x2
+ (3+ 4)x + 3• 4  

  

(b)   

! 

x2
+ (3+5)x + 3•5 

  

(c)   

! 

x2
+ (4 + 6)x + 4• 6  

  

(d)   

! 

x2
+ (3+5)x + 3• 3  

  

(e)   

! 

x2
+ (3+ 4)x + 3• 6  

  

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 

2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is factorable? 

2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is factorable? Explain 

and give an example. 

2(d) How would you describe the relation between the factored form and the expanded form of the above trinomials in 

1(a) – 1(c)?  

 



*  It motivated the checking of answers; and  
*  It created a sense of confidence and thus led to increased interest in the 

algebraic activity. 
Of all the roles that the CAS played in this study, the fact that CAS generated exact 

answers that could be scrutinized for structure and form was found to be crucial to the 
success of these weak algebra students. It proved to be the main mechanism underlying 
the evolution in the CAS students’ algebraic thinking. Ironically, the importance of this role 
was first made apparent to us by the voicing of frustration on the part of one of the 
students in the non-CAS class. This student from the non-CAS class, when faced with 
Questions 2(c) and 2(d) of the task shown in Figure 8, remarked: 
 “How can we describe the relation between the factored form and the expanded 

form of these trinomials? – we don’t even know if our paper-and-pencil 
factorizations and expansions from Question 1 are right.” 

Students in the non-CAS class were at a loss to answer these explanation-oriented 
questions. They stated emphatically that they were not sure of their paper-and-pencil 
answers to Question 1, and could hardly use these as a basis for answering, say, 
Question 2d. In contrast, the students in the CAS class had at their disposal a set of 
factored and expanded expressions that had been generated by the calculator. They thus 
had confidence in these responses and could begin to examine them for elements related 
to structure and form. 

This study analyzed the improvements of two classes of weak algebra students in 
both technique (being able to do) and theory (i.e., being able to explain why and to note 
some structural aspects), in the context of tasks that invited technical and theoretical 
development. At the outset, both the CAS class and the non-CAS class scored at the 
same levels in a pretest that included technical and theoretical components. However, the 
CAS class improved more than the non-CAS class on both components, but especially on 
the theoretical component. 

We see this finding as being of some interest. Being able to generate exact answers 
with the CAS allowed students to examine their CAS work and to see patterns among 
answers that they were sure were correct. This kind of assurance, which led the CAS 
students to theorize, was found to be lacking in the uniquely paper-and-pencil environment 
where students made few theoretical observations. The theoretical observations made by 
CAS students worked hand-in-hand with improving their technical ability. In other words, 
their technique had become theorized, which in turn led to further improvement in 
technique. 
4. The role of the teacher 
Are good tasks and CAS technology all that are needed to render technique conceptual, 
that is, to develop a conceptual understanding of algebraic technique? It would seem not! 

Another deciding factor is the nature of the teacher’s orchestration of classroom 
activity that gives rise to the conceptualizing of technique in technology environments. It is 
the teacher who is pivotal in encouraging the students to struggle with the task, who asks 
them key questions at appropriate times, who helps them to see the overarching themes 
within the tasks, who makes the instrumental genesis converge to a common set of 
techniques and insights, and who leads the classroom discussions that provoke this 
convergence through discourse. However, not all of the teachers in our research study 
proved to be equally successful in orchestrating the co-emergence of technique and theory 
within their students. 



Currently our research group is analyzing teaching practice with the aim of 
identifying some of the key characteristics of teachers’ orchestrations of classroom activity 
with CAS technology that relate to drawing out the conceptual aspects of technical work in 
algebra. Some of the characteristics we have begun to identify include the following: (a) 
importance accorded to the mathematical aspects of the task – both technical and 
conceptual; (b) emphasis on the mathematical-technological similarities/differences; (c) 
interest in inquiring into the students’ thinking regarding the mathematics of the task at 
hand, by asking for their conjectures, their observations, their elaborations, and their 
justifications; and (d) awareness of the many possible roles that the technology can play. 
These possible roles encompass, for example, creating surprising results, generating 
results for the purpose of exploration, verifying other results or conjectures, and serving as 
a computational assistant. However, teachers also need to be able to capitalize on these 
roles in such a way as to encourage student learning. 

Other characteristics of teachers’ orchestrations of classroom activity with CAS 
technology that we have been observing include having a repertoire of tasks that engage a 
variety of learning approaches and evoke different processes, such as, provoking cognitive 
conflict and seeking to resolve the conflict; looking for patterns; generalizing; activating 
general mathematical processes, such as observing, comparing, extrapolating, 
conjecturing, and predicting; and having considered, before the lesson begins, possible 
student responses and how to encourage further evolution of their thinking within the 
ensuing lesson. Promising teacher orchestrations also consider the ways in which to 
incorporate additional artifacts (e.g., worksheets, paper and pencil, the blackboard (or the 
equivalent), electronic projection devices, etc.) and the roles they might play, namely 
guiding the work of pupils and structuring their explorations (worksheets), focusing their 
attention (blackboard), and leading to a convergence of ideas (blackboard). 

In sum, effective teaching practice with CAS would appear to embody planning that 
takes into account at the very least the following: 

1. Starting with a key mathematical idea. 
2. Thinking about both the technical and theoretical aspects of the key idea. 
3. Trying out, when planning the task, some technical examples on the CAS to see 

how best to take advantage of the technology (does it produce any surprises that 
could be integrated into an interesting sequence?) 

4. Deciding what role the technological artifact should play in the task (generate 
examples, create surprises, serve as calculation assistant, …) 

5. Deciding on the epistemological processes to be engaged by the task (pattern 
matching and generalization, conjecturing, seeking connections between 
representations, resolving cognitive conflict, predicting, …) 

6. Reflecting on how to draw out effectively within class discussions the 
mathematical-technological links. 

Last, but not least, our research observations so far suggest that the one aspect of 
teacher’s practice in CAS environments that seems to be most crucial to students’ 
becoming aware of the conceptual aspects of their technical work in algebra is the 
following: Orchestrating classroom discussion in such a way as to draw out students’ 
thinking regarding the mathematics of the task at hand, by asking for their conjectures, 
their observations, their elaborations, and their justifications. When such orchestration is 
accompanied by tasks that (a) go beyond merely asking technique-oriented questions and 
which (b) call upon mathematical processes that include: observing/focusing, predicting, 
reflecting, verifying, explaining, conjecturing, justifying, and which (c) require at times that 



students coordinate CAS techniques with paper-and-pencil techniques, as well as (d) seek 
consistency between surprising CAS outputs and existing theoretical notions, then 
algebraic techniques will have a greater likelihood of being rendered conceptual. 
 
References 
Ainley, J., & Pratt, D. (2005). The significance of task design in mathematics education: 

Examples from proportional reasoning. In H.L. Chick & J.L. Vincent (Eds,), 
Proceedings of the 29th Conference of the International Group for the Psychology 
of Mathematics Education (Vol. 1, pp. 93-122). Melbourne, Australia: PME.  

Artigue, M. (2002a). Learning mathematics in a CAS environment: The genesis of a 
reflection about instrumentation and the dialectics between technical and 
conceptual work. International Journal of Computers for Mathematical Learning, 7, 
245-274. 

Artigue, M. (2002b). L’intégration de calculatrices symboliques à l’enseignement 
secondaire : les leçons de quelques ingénieries didactiques. In D. Guin & L. 
Trouche (Eds.), Calculatrices symboliques–transformer un outil en un instrument du 
travail mathématique : un problème didactique (pp. 277-349). Grenoble : La Pensée 
sauvage. 

Artigue, M. (2008). What do we know? And how do we know it? Plenary presentation at 
ICME-11 Congress, Monterrey, Mexico. 

Artigue, M., Defouad, B., Duperier, M., Juge, G., & Lagrange, J.-B. (1998). Intégration de 
calculatrices complexes dans l’enseignement des mathématiques au lycée 
[Integration of complex calculators in the teaching of mathematics at the lycée]. 
Paris: Université Denis Diderot Paris 7, Équipe DIDIREM. 

Ball, L., Pierce, R.,  & Stacey, K. (2003). Recognising equivalent algebraic expressions: An 
important component of algebraic expectation for working with CAS. In N.A. 
Pateman, B.J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of 
the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 
15-22). Honolulu, USA: PME.  

Ball, L., & Stacey, K. (2003). What should students record when solving problems with 
CAS? Reasons, information, the plan, and some answers. In J.T. Fey, A. Cuoco, C. 
Kieran, L. McMullin, & R.M. Zbiek (Eds.), Computer algebra systems in secondary 
school mathematics education (pp. 289-303). Reston, VA: National Council of 
Teachers of Mathematics.  

Brown, C.A., Carpenter, T.P., Kouba, V.L., Lindquist, M.M., Silver, E.A., & Swafford, J.O. 
(1988). Secondary school results for the fourth NAEP mathematics assessment: 
Algebra, geometry, mathematical methods, and attitudes. Mathematics Teacher, 81, 
337-347. 

Chevallard, Y. (1999). L’analyse des pratiques enseignantes en théorie anthropologique 
du didactique. Recherches en Didactique des Mathématiques, 19, 221-266. 

Drijvers, P.H.M. (2003). Learning algebra in a computer algebra environment (doctoral 
dissertation). Utrecht, The Netherlands: Freudenthal Institute.  

Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical 
instruments: The case of calculators. International Journal of Computers for 
Mathematical Learning, 3, 195-227. 

Heid, M.K. (1988). Resequencing skills and concepts in applied calculus using the 
computer as tool. Journal for Research in Mathematics Education, 19, 3-25.  



Heid, M.K., Blume, G.W., Hollebrands, K., & Piez. C. (2002). Computer algebra systems in 
mathematics instruction: Implications from research. Mathematics Teacher, 95(8), 
586-591. 

Hitt, F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a CAS 
environment with tasks designed from a Task-Technique-Theory perspective. 
International Journal of Computers for Mathematical Learning, 14, 121-152. 
(available from Springer on-line, October 4, 2009: http://dx.doi.org/10.1007/s10758-
009-9151-0) 

Hoyles, C. (2002). From describing to designing mathematical activity: The next step in 
developing a social approach to research in mathematics education? In C. Kieran, 
E. Forman, & A. Sfard (Eds.), Learning discourse: Discursive approaches to 
research in mathematics education (pp. 273-286). Dordrecht, The Netherlands: 
Kluwer Academic. 

Hoyles, C., & Lagrange, J.-B. (Eds.). (2009). Mathematics education and technology: 
Rethinking the terrain. New York: Springer. 

Kieran, C., & Damboise, C. (2007). “How can we describe the relation between the 
factored form and the expanded form of these trinomials? – we don’t even know if 
our paper-and-pencil factorizations are right”: The case for Computer Algebra 
Systems (CAS) with weaker algebra students. In J.-H. Woo, H.-C. Lew, K.-S Park, 
& D.-Y Seo (Eds.), Proceedings of 31st PME Conference (Vol. 3, pp. 105-112). 
Seoul, Korea: PME. 

Kieran, C., & Drijvers, P., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzmán, 
J. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, 
and theoretical reflection: A study of CAS use in secondary school algebra. 
International Journal of Computers for Mathematical Learning, 11(2), 205-263. Also 
available through: http://www.springerlink.com/content/u7t3580294652u37/ 

Kieran, C., & Guzmán, J. (2010).  Role of task and technology in provoking teacher 
change: A case of proofs and proving in high school algebra. In R. Leikin & R. 
Zazkis (Eds.), Learning through teaching mathematics: Development of teachers’ 
knowledge and expertise in practice (pp. 127-152). New York: Springer. 

Kieran, C., & Yerushalmy, M. (2004). Research on the role of technological environments 
in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal (Eds), The 
Future of the Teaching and Learning of Algebra: The 12th ICMI Study (pp. 95-152). 
Dordrecht, The Netherlands: Kluwer Academic. 

Lagrange, J.-B. (1996). Analyzing actual use of a computer algebra system in the teaching 
and learning of mathematics. International DERIVE Journal, 3, 91-108. 

Lagrange, J.-B. (1999). Complex calculators in the classroom: Theoretical and practical 
reflections on teaching pre-calculus. International Journal of Computers for 
Mathematical Learning, 4, 51-81. 

Lagrange, J.-B. (2002). Étudier les mathématiques avec les calculatrices symboliques. 
Quelle place pour les techniques?  In D. Guin & L. Trouche (Eds), Calculatrices 
symboliques. Transformer un outil en un instrument du travail mathématique : un 
problème didactique (pp. 151-185). Grenoble, France  : La Pensée Sauvage. 

Lagrange, J.-B. (2003). Learning techniques and concepts using CAS: A practical and 
theoretical reflection. In J.T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R.M. Zbiek 
(Eds.), Computer algebra systems in secondary school mathematics education (pp. 
269-283). Reston, VA: National Council of Teachers of Mathematics. 



Mounier, G., & Aldon, G. (1996). A problem story: Factorisations of xn-1. International 
DERIVE Journal, 3, 51-61.  

National Council of Teachers of Mathematics. (1999). Dialogues: Calculators – What is 
their place in mathematics classrooms? May/June, pp. 1-16. 

Sacristán, A. I., & Kieran, C. (2006). Bryan’s story: Classroom miscommunication about 
general symbolic notation and the emergence of a conjecture during CAS-based 
algebra activity. In J. Novotná, H. Moraová, M. Krátká, & N. Stehliková (Eds.),  
Proceedings of the 30th PME (Vol. 5, pp. 1-8). Prague, Czech Republic: PME. 

Shaw, N., Jean, B., & Peck, R. (1997). A statistical analysis on the effectiveness of using a 
computer algebra system in a developmental algebra course. Journal of 
Mathematical Behavior, 16, 175-180.  

Skemp, R.R. (1976). Relational understanding and instrumental understanding. 
Mathematics Teaching, 77, 20–26. 

Zbiek, R.M. (2003). Using research to influence teaching and learning with computer 
algebra systems. In J.T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R.M. Zbiek (Eds.), 
Computer algebra systems in secondary school mathematics education (pp. 197-
216). Reston, VA: National Council of Teachers of Mathematics 

Zehavi, N., & Mann, G. (2003). Task design in a CAS environment: Introducing 
(In)equations. In J.T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R.M. Zbiek (Eds.), 
Computer algebra systems in secondary school mathematics education (pp. 173-
191). Reston, VA: National Council of Teachers of Mathematics. 

 


