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ABSTRACT. This paper addresses the dialectical relation between theoretical thinking and technique, as they co-
emerge in a combined computer algebra and paper-and-pencil environment. The theoretical framework in this 
ongoing study consists of the instrumental approach to tool use and an adaptation of Chevallard’s anthropological 
theory. The main aim is to unravel the subtle intertwining of students’ theoretical thinking and the techniques they 
use in both media, within the process of instrumental genesis. Two grade 10 teaching experiments are described, 
the first one on equivalence, equality and equation, and the second one on generalizing and proving within 
factoring. Even though the two topics are quite different, findings indicate the importance of the co-emergence of 
theory and technique in both cases. Some further extensions of the theoretical framework are suggested, focusing 
on the relation between paper-and-pencil techniques and computer algebra techniques, and on the issue of 
language and discourse in the learning process.  
 
KEY WORDS. algebra, computer algebra, instrumentation, technique in algebra, technology, theoretical thinking 
in algebra 

 

1. Introduction to the topic and overview 
  
The integration of new technologies in mathematics education has been an ongoing issue for 
the last two decades. Nowadays, access to technology has drastically increased, not the least 
because of the availability of hand-held devices such as graphing calculators and symbolic 
calculators. Still, confusion on the role of technology in the teaching and learning of 
mathematics is considerable. From the students’ perspective, it is often not clear how the use of 
technological tools relates to the required paper-and-pencil skills. Teachers and teacher 
educators are struggling with the same questions and are searching for guidelines that foster 
successful integration of new media into teaching practice. Researchers address these issues 
from a scientific perspective, but have difficulty in providing evidence of improved learning 
with technological means, as well as in understanding the influence of technology on learning. 
In all, the original optimism regarding the benefits of technology, which would allow a focus 
on conceptual understanding at the expense of calculation techniques, has become quite 
nuanced: 
 

Actually, the view of the technological environment as one that imbalances the 
relationship between technical and conceptual work, by means of saving time on the 
technical work left to the machine, and concentrating on the conceptual work, was not 
supported by our observations. (Artigue, 1997, p. 164, translation by the authors) 
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The issue of technology changing the relation between technical skills and conceptual 
understanding is particularly pertinent in algebra education. Dedicated pedagogical 
environments for developing specific algebraic techniques, theorems, or models have been 
created, such as Algebrista (Cerulli and Mariotti, 2002), Aplusix (Nicaud, Bouhineau and 
Chaachoua, 2004) and AlgebraArrows (Boon and Drijvers, 2005). Scenarios have been 
developed for using more general technological tools such as spreadsheet software to foster 
algebraic thinking (Haspekian, 2005). In this paper, however, we focus on the powerful 
computer algebra systems (CAS), which nowadays offer broad, general-purpose environments 
for carrying out all types of algebraic procedures. The question is how the use of these tools 
interacts with the paper-and-pencil skills and the conceptual understanding of 10th grade 
students. 
 
To approach this question, several perspectives can be taken. As a point of departure, we see a 
CAS as a mathematical tool, and consider CAS use as a particular case of tool use in general. In 
that sense, the work of Vygotsky on tool use is at the base of our work (Vygotsky, 1930/1985). 
To paraphrase the notion of a tool as an extension of the body, the CAS being a cognitive tool 
can be seen as an extension of the mind. In recent years, the work of Vygotsky and, to a lesser 
extent, Piaget, has been elaborated into the so-called instrumental approach to tool use. The 
instrumental approach to tool use encompasses elements from both cognitive ergonomics 
(Vérillon and Rabardel, 1995; Rabardel, 2002) and the anthropological theory of didactics 
(Chevallard, 1999). An essential starting point in the instrumental approach is the distinction 
between an artifact and an instrument. Whereas the artifact is the – often physical – object that 
is used as a tool, the instrument involves also the techniques and schemes that the user develops 
while using it, and that guide both the way the tool is used and the development of the user’s 
thinking. The process of an artifact becoming an instrument in the hands of a user − in our case 
the student − is called instrumental genesis. One of the main characteristics of the instrumental 
approach, as we see it, is that it stresses the effort and time that the non-trivial process of 
instrumental genesis requires. A second important aspect of this approach is the importance of 
the bilateral relationship between the artifact and the user: while the student’s knowledge 
guides the way the tool is used and in a sense shapes the tool (this is called 
instrumentalization), the affordances and the constraints of the tool influence the student’s 
problem-solving strategies and the corresponding emergent conceptions (this is called 
instrumentation). In short, the student’s thinking is shaped by the artifact, but also shapes the 
artifact (Hoyles and Noss, 2003).  
 
The instrumental approach to tool use was recognized by French mathematics education 
researchers as a potentially powerful framework in the context of using CAS in mathematics 
education. Many publications show how valuable this approach is for the understanding of 
student-CAS interactions and their influence on teaching and learning (Artigue, 1997, 2002; 
Lagrange, 2000, 2005; Trouche, 2000, 2004a, 2004b; Guin, Ruthven and Trouche, 2004). It has 
not only been applied to the integration of CAS into the learning of mathematics, but also to the 
use of spreadsheets (Haspekian, 2005) and dynamic geometry systems (Falcade, 2003). 
 
As Monaghan (2005) pointed out very clearly, one can distinguish two directions within the 
instrumental approach, which link up with the two background frameworks. In line with the 
cognitive ergonomic framework, some researchers see the development of schemes as the heart 
of instrumental genesis. Although these mental schemes develop in social interaction, they are 
essentially individual. In the work of Trouche (2000), Drijvers (2003), and Drijvers and 
Trouche (in press), these so-called schemes of instrumented action play a dominant role, 
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whereas techniques are considered as the visible parts of these schemes. Within the schemes, 
conceptual and technical elements are intertwined. 
 
More in line with the anthropological approach, other researchers focus on techniques that 
students develop while using technological tools and in social interaction. The advantage of this 
focus is that instrumented techniques are visible and can be observed more easily than mental 
schemes. Furthermore, this approach takes into account the importance of techniques, which 
tends to be underestimated in discussions on the integration of technology. Still, it is 
acknowledged that techniques encompass theoretical notions. The focus on techniques is 
dominant in the work of Artigue (2002) and Lagrange (2000) in particular. The latter view, 
with techniques as an important factor in Chevallard’s anthropological theory, forms the main 
framework of our study, and will be addressed in more detail in the next section, along with the 
main research question. 
 
After some information on the methodological components of the study, two themes are 
addressed: the first on equivalence, equality, and equation; the second on generalizing and 
proving within factoring. A concluding discussion brings the article to an end. As the study is 
ongoing, we point out that the results presented here are only part of the project findings. 
 

2. The study  
 

2.1 Theoretical framework: Task-Technique-Theory 
 
In his anthropological theory of didactics, Chevallard (1999, p. 225) describes four components 
of practice by which mathematical objects are brought into play within didactic institutions: 
task, technique, technology, and theory. He notes that tasks are normally expressed in terms of 
verbs, for example, multiply the given algebraic expression. He goes on to define technique as 
“a way of accomplishing, of carrying out tasks” and points out that a technique “is not 
necessarily algorithmic or quasi algorithmic.” In his theory, he separates technique from the 
discourse that justifies/explains/produces it, which he refers to as technology1. But he also 
admits that this type of discourse is often integrated into technique, and points out that such 
technique can be characterized in terms of theoretical progress. According to Chevallard, 
theory takes the form of abstract speculation, a distancing from the empirical. Thus, within the 
anthropological approach, discourse can be viewed as bridging technique and theory. 
 
In their adaptation of Chevallard’s anthropological theory, Artigue and her colleagues (see, 
e.g., Artigue, 2002) have collapsed Chevallard’s technology and theory into the one term, 
theory, thereby giving the theoretical component a wider interpretation than is usual in the 
anthropological approach. Furthermore, Artigue (2002, p. 248) notes that technique also has to 
be given a wider meaning than is usual in educational discourse: “A technique is a manner of 
solving a task and, as soon as one goes beyond the body of routine tasks for a given institution, 
each technique is a complex assembly of reasoning and routine work.”  

                                                
 
 
1 This is in contrast to our use of the term technology, which refers to the use of computers and other technological 
tools. 
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Lagrange (2002, p. 163) has expressed his perspective on the interrelationship of task, 
technique, and theory as follows: 

Within this dynamic, tasks are first of all problems. Techniques become elaborated 
relative to tasks, then become hierarchically differentiated. Official techniques emerge 
and tasks lose their problematic character: tasks become routinized, the means to perfect 
techniques. The theoretical environment takes techniques into account – their 
functioning and their limits. Then the techniques themselves become routinized to 
ensure the production of results useful to mathematical activity. … Thus, technique has 
a pragmatic role that permits the production of results; but it also plays an epistemic role 
(Rabardel and Samurçay, 2001) in that it constitutes understanding of objects and is the 
source of new questions.  [translation by the authors] 
 

Elsewhere, Lagrange (2003, p. 271) has elaborated this latter idea further:  “Technique plays an 
epistemic role by contributing to an understanding of the objects that it handles, particularly 
during its elaboration. It also serves as an object for conceptual reflection when compared with 
other techniques and when discussed with regard to consistency.” It is precisely this epistemic 
role played by techniques that is a focus of our study, that is, the notion that students’ 
mathematical theorizing develops as their techniques evolve. It is also noted that, within our 
perspective on the co-emergence of theory and technique, the nature of the task is considered to 
play an equally fundamental role. However, the importance of the tasks goes beyond the 
situating of this study within the context of instrumental genesis. Hoyles (2001, p. 284), for 
example, has drawn attention to the significant role played by the “design of activities and the 
design or choice of the tools introduced to foster mathematics learning, not that design will lead 
to outcomes in a deterministic way, but at least this focus would allow investigation of the 
transformative potential of tools in activities … and bring knowledge and epistemology back 
into centre stage.”  Thus, the triad Task-Technique-Theory (TTT) serves as the framework not 
only for gathering the data during the teaching experiments, and for analyzing that data, but 
also for constructing the tasks of this study. 

2.2 Aim and methodological considerations of the study 
 
The research study had as a central objective the shedding of further light on the co-emergence 
of technique and theory within the CAS-based symbol manipulation activity of secondary 
school students. However, because paper-and-pencil techniques were a fundamental part of the 
algebra program of studies of the schools where the research was carried out, and because we 
believe in the importance of combining the two media, they too were included in the teaching 
sequences. Thus, the research question that we attempt to answer in this article is the following: 
 

In which ways does the interaction between technique and theory foster students’ 
algebraic thinking when working in a combined CAS/paper-and-pencil environment?  

  
The first year of the project, 2003, focused on designing the tasks and sequences to be used 
during the classroom segment of the study. The research team created several sets of activities 
that aimed at supporting the co-emergence of technique and theory. Two of these sets of 
activities are included in this article, one dealing with the theme of equivalence, equality, and 
equation; the other, with the theme of generalizing and proving within factoring. These two 
were chosen for this article for very specific reasons. First, they deal with rather different 
underlying concepts, one having a more theoretical focus and the other a more technical focus. 
Second, the nature of the CAS techniques in each theme is quite different -- one involving a 
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larger and more diverse set of CAS approaches; the other, fewer CAS commands, yet 
seemingly closer to the corresponding paper-and-pencil techniques than might appear to be the 
case for the other theme. Lastly, the two themes differ with respect to the nature of the global 
mathematical activity involved -- the first entailing making connections and seeing 
relationships; the second, pattern seeking, noticing structure, and proving. We felt that having 
two quite different sets of activities featured in this article would better illustrate the ways in 
which the task-technique-theory framework can be applied to a variety of algebra situations at 
the high school level. 
 
The manner in which the triad task-technique-theory served in designing these two sets of 
activities is elaborated later within each thematic section. It is noted here, however, that all of 
our activity sets, which were planned to take anywhere from one to five class periods, involved 
work with CAS, with paper and pencil (P&P), and questions of a reflective nature. In designing 
these tasks, we took seriously both the students’ background knowledge and the fact that these 
tasks were to fit into an existing curriculum; but we also did our best to ensure that they would 
unfold in a particular classroom culture that reflected a certain priority given to discussion of 
substantive mathematical issues. Tasks that asked students to write about how they were 
interpreting their work and the related CAS displays aimed to bring mathematical notions to the 
surface, making them objects of explicit reflection and discourse in the classroom, and 
clarifying ideas and distinctions, in ways that simply “doing algebra” may not require. 
 
In conceptualizing the design of the tasks, an additional factor played an important role. A great 
deal of research evidence exists already with respect to the benefits of multi-representational 
approaches (e.g., graphical representations) in making algebraic objects such as variables, 
expressions, and equations more meaningful to students (see, e.g., Heid, 1996; Kieran and 
Yerushalmy, 2004). However, algebra involves more than representational activity (Kieran, 
2004, 2006); symbolic transformational activity lies at its heart. In view of the limited amount 
of research that exists regarding the use of CAS tools with the purely symbolic aspects of 
algebra learning at the secondary school level, a deliberate choice was made to restrict the tasks 
of this study to those involving the letter-symbolic form. 
 
The second year of the project, 2004, as well as the first segment of the third year, 2005, was 
devoted to the classroom part of the research. Two of the six participating 10th grade classes 
(15-year-old students) are featured in this article – one from 2004 and the other from 2005. The 
2004 class consisted of 7 girls and 10 boys, all of them considered by their teacher to be of 
upper-middle mathematical ability. The 2005 class contained 6 girls and 11 boys, all of them 
high achievers in mathematics and following an enriched program. Both classes were taught by 
the same teacher, in a private school in Montreal. This teacher, whose undergraduate degree 
and teacher training had been done in the U.K., had been teaching mathematics for five years, 
but had not had a great deal of experience with technology use in mathematics teaching, except 
for the graphing calculator. He was a teacher who, along with encouraging his pupils to talk 
about their mathematics in class, thought that it was important for them to struggle a little with 
mathematical tasks. He liked to take the time needed to elicit students’ thinking, rather than 
quickly give them the answers. He, along with the other teachers who took part in the study, 
followed a program of training prior to their teaching with the new materials. This training 
program involved some sessions with the CAS technology and others devoted to the 
pedagogical aspects of the teaching materials. Some of the teachers also provided feedback to 
the research team on the content of the tasks, at each cycle of task development.    
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Students in these two classes had learned a few basic techniques of factoring (for the difference 
of squares and for factorable trinomials) and the solving of linear and quadratic equations 
during their 9th grade mathematics course and had used graphing calculators on a regular basis; 
however, they had not had any experience with the notion of equivalence, one of the theoretical 
ideas developed in the research materials, or with symbol-manipulating calculators. It is noted 
that these students were quite skilled in algebraic manipulation, as was borne out by the results 
of a pretest we administered at the outset of the study.  It was during the algebra part of their 
10th grade mathematics course, which extended from the month of September to the end of 
January, when the activities designed by the research team, accompanied by CAS technology 
(TI-92 Plus calculators), were integrated into the students’ regular program of mathematics and 
taught by the classroom mathematics teacher. 
 
For each class that participated, data were collected that focused on the students and the 
classroom situation at large. Two video cameras were set up in the classrooms, one in the front 
and a second one in the rear. One or two researchers took field notes during each class period. 
Students from the 2004 classes were interviewed (and videotaped), individually or in pairs, at 
several instances – before, during, and after class. In addition to the classroom videotaping, 
audiotaped mini interviews were also conducted with the 2005 students during class time, 
particularly in those areas of the tasks where it was thought that further questioning of students 
might prove helpful to our data analysis. A posttest involving CAS use was administered after 
the set of activities on equivalence had been completed. All students were pretested; however, 
the pretest for the 2005 students differed somewhat from the one administered to the 2004 
cohort. Thus, data sources for the segment of the study that is presented in this article include 
the videotapes of all the classroom lessons dealing with the two sets of activities, videotaped 
individual and pair-wise interviews with students outside of class time, audio-taped mini 
interviews with individual students during class time, videotaped view-screen displays of 
student and teacher activity with the CAS, a videotaped interview with the teacher of the two 
classes featured in this article, the activity sheets of all students (these contained not only their 
paper-and-pencil responses but also a record of CAS displays and their interpretations of these 
displays), written pretest and posttest responses, and researcher field notes.  
 
The third year of the study centered on data analysis. As will be illustrated in this article, the 
analysis combined both qualitative and quantitative approaches. Guided by the TTT 
foundations of the study, we developed a priori descriptions of the techniques and theories that 
we considered might emerge among students while working on the given tasks. These 
descriptions provided the lens for gathering and analyzing the data drawn from the classrooms, 
from student work, and from student interactions occurring in the second and third years of the 
study. The structure of this article in fact makes explicit these a priori descriptions of technique 
and theory that we generated, as well as the way in which they served to focus our analyses. 
 

3. The theme of equivalence, equality, and equation 

3.1 Aim of the teaching sequence 
 
The underlying motive of this 3-to-5-lesson teaching sequence is the subtle relationship 
between arithmetic and algebra: on the one hand, the numerical world is the most important 
motive and model for the world of algebra, on the other hand algebra goes beyond the 
numerical world, which in fact is part of its power.  
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This two-sided relationship is reflected in the notion of equivalence of algebraic expressions. 
On the one hand, equivalence of two expressions relates to the numeric as it reflects the idea of 
‘equal output values for all input values’. On the other hand, the notion of equivalence of 
expressions from an algebraic perspective means that the expressions can be rewritten in a 
common algebraic form. Therefore, the intended conceptual progression of this 10th grade 
teaching sequence was to have students develop an integrated understanding of equivalence of 
expressions, in which the numeric and algebraic perspectives are coordinated. Consultations 
with teachers and perusal of mathematics textbooks indicated that the 10th grade students in our 
study had had no explicit previous encounter with the concept of equivalence and its relation to 
numeric equality, algebraic transformation, and equation. Thus, we set out to design tasks that 
would encompass these notions.   

3.2 Task 
 
Figure 1 shows the outline of the content of the teaching materials for this sequence, which 
included also a pretest and a posttest. 
 

Activity 1 
Part I 
Part II 
Part III 
 
Part IV 
 
Part V 
Activity 2 
Part I 
 
Part II 

 
Activity 3 
Part I 
Part II 
Part III 
Part IV 

Equivalence of Expressions 
Comparing expressions by numerical evaluation 
Comparing expressions by algebraic manipulation 
Testing for equivalence by re-expressing the form of an expression – using the 
Expand command 
Testing for equivalence without re-expressing the form of an 
expression – using a test of equality 
Testing for equivalence – using either CAS method 
Continuation of Equivalence of Expressions 
Exploring and interpreting the effects of the Enter button, and the 
Expand and Factor commands 
Showing equivalence of expressions by using various CAS approaches 
Homework 
Transition from Expressions to Equations 
Introduction to the use of the SOLVE command 
Expressions revisited, and their subsequent integration into equations  
Constructing equations and identities 
Synthesis of various equation types 

Tools 
CAS 
P&P 
CAS 
 
CAS 
 
CAS 
 
CAS/P&P 
 
CAS 
CAS 
 
CAS 
CAS 
P&P 
CAS 

Figure 1. Outline of the teaching unit 
 
At the start of the teaching sequence, numerical evaluation of expressions by using CAS and 
comparison of their resultant values were used as the entry points for discussions on 
equivalence. One of the core tasks here was the Numerical Substitution Task (Figure 2). It 
aimed at students’ noticing that some pairs of expressions seem always to end up with equal 
results, and thus evokes the notion of equivalence based on numerical equality.  It is noted that 
the algebraic expressions included in the task were fairly complex so as not to permit the 
evaluation of equivalence by purely visual means. The task was followed by a reflection 
question (which was one of the characteristics of the teaching unit) on what would happen if 
the table were extended to include other values of x. 
  



 
 
 

8 

 
Figure 2. Numerical Substitution Task 

 
The task and the CAS substitution technique led to the following definition of equivalence of 
expressions: 

We specify a set of admissible numbers for x (e.g., excluding the numbers where one of 
the expressions is not defined). If, for any admissible number that replaces x, each of the 
expressions gives the same value, we say that these expressions are equivalent on the 
set of admissible values. 

The stress on the set of admissible numbers was made deliberately by the designers, so as to 
make students aware of the attention that one has to pay to chaining equivalent expressions 
with possible restrictions. Expression 5 (expr5) in Figure 2 was a first example of this.   
 
The impossibility of testing all possible numerical substitutions to determine equivalence 
motivated the use of algebraic manipulation and the explicit search for common forms of 
expressions in the second activity. Different CAS techniques could be used. An example of a 
core task was the CAS Technique Task (Figure 3). Students could carry out different CAS 
techniques and compare the results in the light of their understanding of equivalence. This task 
aimed at developing the notion of equivalence as involving a common algebraic form. The 
reflection questions that followed concerned the identification of equivalent expressions, 
including a justification and the consideration of possible restrictions.  

 

 
Figure 3. CAS Technique Task 
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After this, paper and pencil were used to ‘verify’ the CAS results and to reconcile the 
techniques in the two media. Then attention was drawn towards restrictions on equivalence, 
and the way the CAS that we used neglects them, whereas students should be aware of them 
while working with paper and pencil and with CAS. 
 
In the third activity, the relation between two expressions being equivalent or not, and the 
corresponding equation having many, some, or no solutions was explored in both CAS and 
paper-and-pencil tasks. The following Construction Task (Figure 4) addressed this issue. 
Students were asked to construct a pair of equivalent expressions, and, in a similar follow-up 
task, two non-equivalent expressions. The reflection question that was raised after that 
concerned the relation between the nature of an equation’s solution(s) and the equivalence or 
non-equivalence of the expressions that form the equation. Once more, CAS technique and 
theory were interacting. 
 

1. Construct an equation made from two equivalent expressions of your own choosing. 
2. Explain your reasons for choosing these two particular expressions. 
3. Without solving it, what can you say about the solutions of this equation? 
4. How would you use the CAS to support your response to Question 3 just above? 

Figure 4. Construction Task 
 
The posttest contained similar construction tasks. A Posttest Task (Figure 5) aimed, once again, 
at students’ expressing the relation between the solutions of an equation and the equivalence of 
the expressions that form the equation. As before, the coordination of theoretical notions and 
CAS technique was involved. 
 

 
Figure 5. Posttest Task 

3.3 Technique 
 
What are the main techniques that students could develop while working at the tasks presented 
in the previous section? Figure 6 shows an inventory of techniques that involve the notion of 
equivalence, using both CAS and paper and pencil. 
 

Technique CAS variant 
(using TI-92 Plus) 

Paper-and-Pencil 
variant 

1. Substituting numerical values 
 

With-operator ‘|’, followed by 
automatic evaluation 

Substitution, followed by 
evaluation by hand 

2. Common form  
- by factoring 

Factor command, usually 
complete factorization 

Factor by hand,   
often incomplete  
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3. Common form  
- by expanding 

Expand command Expand by hand, sensitive 
to errors 

4. Common form  
- by automatic simplification 

Automatic simplification after 
Entering 

Manipulation by hand 
only to a limited extent  

5. Test of equality 
 

Enter equation + Enter Manipulation by hand 
only to a limited extent  

6. Solving equations 
 

Solve command Limited to a specific set 
of types of equations 

Figure 6. Different techniques in two media 
 
Let us briefly comment on these techniques. First, we should stress that the CAS-techniques 
and the paper-and-pencil techniques are different. The comparison of the same approach in the 
two different media, however, is interesting and the reconciliation of the two is not self-evident. 
Within the tasks set for this theme, CAS techniques dominate.  
 
Technique 1 concerns numerical substitution, which provides the numerical basis for algebraic 
equivalence. A numerical substitution that gives different results for two expressions proves 
their non-equivalence, whereas obtaining the same results does not guarantee equivalence. For 
the paper-and-pencil variant, the difficulty for the students is not the substitution itself, but the 
evaluation and simplification of the results. 
 
CAS technique 2, finding a common form by factorizing, has two variants, one in which both 
forms that are tested for equivalence are to be factored, and a second in which one of the two 
expressions is already factored, so that in fact the non-factored form is put into the form of the 
other by means of factoring. The difference is that in the latter case a third expression is not 
involved, whereas in the regular variant the two expressions are rewritten into a third, 
factorized form that is really ‘common’. The same holds for CAS technique 3, finding a 
common form by expanding. The CAS factor technique usually gives fully factored forms, 
whereas with paper and pencil students might end up with only partially factored forms. For the 
Expand technique, the paper-and-pencil variant is close to the CAS variant, though more 
sensitive to mistakes in more complex cases. 
 
CAS technique 4 comes down to using the CAS for Automatic Simplification. We should note, 
however, that it is not always clear what is ‘simple’. For this CAS technique, similar variants 
exist as for techniques 2 and 3 with respect to the obtaining of a common form with or without 
creating a third expression. The CAS Automatic Simplification does not inform on restrictions, 
which students have to consider themselves. For example, )1/()23( 2

+++ xxx  will be 
automatically simplified as 2+x . In the definition of equivalence, this is addressed by defining 
equivalence on a set of admissible values. While working with paper and pencil, automatic 
simplification as such does not exist, and furthermore requires the ability to look globally at 
expressions and ‘see’ possible simplification maneuvers, such as grouping similar terms or 
canceling out common factors. 
 
CAS technique 5 comes down to the CAS checking both sides of the equation for equivalence, 
by means of automatic simplification and other ‘black-box’ means. The CAS will come up with 
‘true’ in cases of equivalence. Once more, restrictions are ignored. This technique has probably 
the most ‘black-box’ character, and the output it produces is the most difficult to interpret. This 
CAS technique was deliberately introduced into the design of the tasks so as to provoke student 
questioning of its output. Concerning the paper-and-pencil variant, the same remark as was 
made for technique 4 is applicable here. 
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CAS technique 6, solving the corresponding equation, involves a change of perspective. The 
notion of an equation solution is related to the issue of equivalence of expressions. If the 
equation expr1 = expr2 has infinitely many solutions, expr1 and expr2 are equivalent, whereas 
only ‘a few’ solutions indicates non-equivalence.  

3.4 Theory 
 
From an a priori perspective, we now ask how theory is involved in the tasks and the 
techniques presented thus far. We distinguish the following four main theoretical elements, 
which are intertwined and related to the techniques and the tasks. 
 
1.  (Dis-)connecting the numerical and the algebraic 

This issue concerns the differences and connections between the numerical world and the 
world of algebra. The algebraic world is rooted in the numerical world, but exceeds it and 
develops into a world of its own. This is a difficult issue throughout the teaching unit, 
which emerges initially while using technique 1, and reemerges with techniques 5 and 6. 
 

2.  The notion of equivalence 
Two notions of the equivalence of two expressions can be distinguished: an algebraic 
view as having a common form, and a numerical view on equivalence as having 
− always, in most cases, or even just in some cases − the same numerical output values. 
The latter view is related to the previous item, and is reflected in the language issue 
related to the words equivalent and equal. The algebraic view on equivalence appears in 
techniques 2, 3, and 4, and in a somewhat more complex way in technique 5. 
 

3. The issue of restrictions 
The issue of restrictions on equivalence is an important theoretical aspect of the concept 
of equivalence. It involves both the particularities of the way the CAS deals with 
restrictions, and the somewhat strange definition − at least possibly strange in the eyes of 
the students − of equivalence involving a set of admissible values. The issue emerges 
particularly when techniques 2 to 6 are applied to expressions with restricted domains. 
 

4.  Coordination of solving an equation and the notion of equivalence 
The relation between solving an equation and the notion of equivalence of expressions, 
and between restrictions on equivalence and solutions of the equation, could be confusing 
for students. Both restrictions and solutions have a sense of ‘exceptions’, but in a kind of 
complementary way. This issue needs coordination, particularly of technique 6 with 
techniques 2 to 5. 

3.5 Analysis of student data 
 
In this section we present the results of the data analysis, which are organized according to the 
four theoretical elements mentioned above. As well, this analysis globally describes the 
development of students’ thinking over time. In particular, we illustrate the ways in which, 
during the process of developing techniques related to exploring the equivalence of 
expressions, students grappled with theoretical issues along the way. The reader is reminded 
that the data in this section are drawn from two grade 10 classes, one from the 2004 segment of 
the study and the other from 2005 (note, however, that students’ names have been changed).  
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3.5.1 (Dis-)connecting the numerical and the algebraic 
We first encounter the issue of (dis-)connecting the numerical and the algebraic in the 
Numerical Substitution Task and its reflection question. The application of CAS technique 1, 
the numerical substitution using the ‘with’-operator, was no problem for the students. In the 
two right-hand columns of the table (Figure 2), students themselves chose some values for 
substitution. This led to some surprising observations.  
 
• Jacob deliberately chose –2, as he saw this as a problem for expr5. He seemed to want to 

test the calculator for the case of restrictions. Indeed, he got ‘undef’ as the answer. This 
suggests that some students find a challenge in exploring the ‘borders’ of the CAS 
capacities. We conjecture that only a minority of the students have this attitude; still, it is 
interesting to exploit it. 

• John chose x = π, which resulted in ‘nearly symbolic’ answers such as 

! 

(" # 3) $ (4 $ " # 3)  
for the fourth expression )93()3( 2

!++! xxx . This output bridges the gap between the 
numerical and the algebraic worlds. A next time, we might encourage students to make 
such substitutions. 

 
These observations show that the CAS substitution in combination with the task led to 
interesting thoughts on numerical substitution. 
 
After filling in the table, the following reflection task was posed: Based on your observations 
with regard to the results in the table (shown in Figure 2), what do you conjecture would 
happen if you extended the table to include other values of x? All students predicted the same 
values to appear for the equivalent expressions in case of a new substitution. Out of 32 (two 
absent), 13 mentioned the restriction x = -2 for expr5. The work of Léonie, shown in Figure 7, 
is representative of these latter responses. 
 

 
Figure 7. Léonie’s ideas on expanding the table 

 
Some of the student worksheet formulations showed words like ‘similar’, ‘equal’, or ‘even’; so 
students had some difficulty in using an appropriate terminology. We see this as a combination 
of a language issue and a not yet completely sharp view of the underlying conceptions.  
 
A minority of the students seemed to have a sense of what is behind the equal numerical values 
and were moving towards the notion of algebraic equivalence.  For example, Michel wrote 
down: 

“I believe that if I were to extend the table, #1 and #4 would give the same set of 
results, as well as #3 and #5 would give the same results. This is probably because when 
the expressions are simplified, they will come out to the same simplified expression.” 

We see the notion of common form emerging, particularly in the phrase “the same simplified 
expression”. In spite of this feeling for the relation between the numeric and the algebraic, 
some students felt unsure about algebra providing certainty about numerical values, even if 
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their algebraic skills were good. In fact, all through the teaching sequence, students referred to 
the numerical to check their algebraic work.   
 
In all, students seemed to have an intuitive basis for the idea of equivalence as having always 
the same numerical value, even if this was sometimes expressed in an informal way. This 
theoretical notion was clearly supported by the CAS substitution technique, which makes 
numerical substitutions ‘cheap’ to carry out. The repeated substitution with the CAS confronted 
the students with a phenomenon of equal values, which invited algebraic generalization. Still, 
the relation between the algebraic and the numeric was somewhat vague. Even if the students 
were aware of the impossibility of checking all numerical values, the connection with the 
algebraic was not yet fully established. Let us have a closer look at these two sides of the 
notion of equivalence. 
 

3.5.2 The notion of equivalence 
The substitution of numerical values and the prediction of what would happen if new columns 
were added seemed to lead to the numerical view on equivalence of expressions as ‘having the 
same output values for each of an infinite set of input values’. However, the protocol of a 
classroom discussion in the 2004 class shows that the algebraic view of  ‘having the same 
form’ also came up (Figure 8). 
 
Mark The expressions are the same thing as the other ones, just in a different format.   
Teacher So you’re saying that these pairs of expressions are exactly the same.   
Mark Equivalent representations of the same thing.   
Teacher What are you meaning by what you said? 
Mark They represent the same thing, they give you…like if you substitute an x, like it will come out to 

the same answer.   
Teacher Why is that the case? 
Mark Because they’re just a different form, like they’re an unfactored of a, uh, multiplication of two 

binomials, or something like that.  
Figure 8. The notion of algebraic equivalence emerging 

 
While the student refers to substitution of values when he has difficulty in expressing himself, 
it seems clear that he relates the notion of equivalence to having a similar algebraic form. 
However, the idea of common form turned out to be somewhat problematic in two senses. First, 
some of the students considered common form as a basic, simplified, or even ‘simplest’ form 
(Figure 9).  
 
Interviewer  What does that mean to you “re-expressed in a common form”? 
Andrew  Uuh, I think it’s just a simplified common form. 
Interviewer This is a common form for what?  
Andrew For this expression. 

Figure 9. Common form of one expression instead of two 
 
The following extract (Figure 10) indicates that for many of those students, this simplified or 
basic form was the expanded form. Some considered the factored form to be common as well.  
 
William They’re all different forms of the same basic expression. 
Interviewer Which one is the basic expression? 
William The expanded form. 

Figure 10. Common form being the expanded form 
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In fact, the CAS Technique Task (Figure 3), with its Factor and Expand commands, may have 
partially provoked this notion. Also, the Automatic Simplification makes it particularly easy to 
get a transformed simplified expression even without explicitly asking for it. Furthermore, we 
conjecture that this difficulty is caused by the ambiguous meaning of the word ‘common’, 
which can refer both to ordinary or basic − which is not what we meant − and to shared. So we 
see here an interplay of a language issue and CAS techniques, which influences − and, 
compared to our teaching aims, can work against − the notion of algebraic equivalence. 
 
A second complication in the notion of common form resulted from the first one. If ‘common’ 
is taken as ‘basic’, then indeed one algebraic expression can have several common forms, such 
as the factored and the expanded one, instead of our idea of two expressions being expressed in 
a common form. The last line of the above verbatim of Andrew (Figure 9) indicates that he 
perceived a common form to be common for one single expression, instead of a pair of 
expressions. Later in the teaching sequence, he changed his interpretation towards the idea of a 
shared form; however, arriving at this notion took quite some time, with much confusion about 
common being ordinary or simplified, and with uncertainty about the interchangeability of 
common form within three equivalent expressions.  
 
Let us now consider in more detail how the available techniques linked up with the conceptual 
understanding of equivalence of expressions. The first technique on numerical substitution, of 
course, stresses the ‘equal values’ view of equivalence. The Factor, Expand and Automatic 
Simplification techniques are on a more algebraic level, but seem to foster the notion of 
common form as being a ‘simple’ form. The Test of Equality technique is probably the most 
interesting one from the conceptual point of view, as it seems to act at the borderline between 
the numeric and the algebraic. This technique provides ‘true’ in cases of equivalence, but just 
returns the (sometimes transformed) equation in other cases. The latter was difficult to 
understand for many students, as they would have expected something like ‘false’; whereas 
returning an equation − two expressions with an equal sign in between − unjustly suggested 
equivalence to them (Figure 11). 
 
Suzanne  Uhm, I entered the problem )5)(2)(13()123)(20( 222

+!!!=!+!+ xxxxxxxx and it gave 
me pretty much the same problem back, but rearranged, it’s the same answer. When you think 
that the other one said “true,” it is kind of puzzling. ... The answer that it gave me. I figure that 
that’s this statement, like the first expression equals the second expression is true. … When I 
see an equal sign, I figure they are equivalent, the same. 

[…] 
Interviewer How would you now interpret such a display when you enter in two expressions like that? 
Suzanne Uhm, that it can be right sometimes, but isn’t always right. With specific numbers, it is correct. 
Interviewer So, when you mean correct? 
Suzanne That you would get the same number in the end on both sides. But only sometimes. 
Interviewer Only for some numbers. 
Suzanne Yah. 
Interviewer   So how do you feel about that? 
Suzanne I’m still confused. With the “true”s and the “=”s, to me it all has sort of the same meaning. I 

guess I just have to change my way of thinking. 
Figure 11. Confusion about the CAS returning the equation for the case of non-equivalence 

 
In spite of the confusion that Suzanne expresses in the last line, we appreciate that she takes it 
as an incentive to rethink her conceptions. In fact, that is what the tasks and techniques, if dealt 
with properly by the teacher, can provoke: a rethinking of the theoretical knowledge. The fact 
that the CAS just returned the equation for the case of non-equivalence enhanced classroom 
discussion.  
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A second issue that was related to the role of techniques in the evolution of students’ thinking 
about equivalence concerned the coordination of different techniques as a means to check 
consistency. In several cases, students used different techniques, both paper-and-pencil and 
CAS, to verify the consistency of their theorizing. Surprising CAS results in some cases gave 
rise to conflicts that invited reasoning. For example, at first Andrew was puzzled when the 
CAS simplified 

! 

(2 " x)(1" 2x)  as 

! 

(x "2)(2x "1) . After some thinking about this, he found an 
explanation: 

“I think since it’s switching them both that it works out.  Let’s just say x was 
represented by 6, -4 times -11, which is 44.  And the other one it’s 6 - 2, which is 4 
times 11, which is also 44.  It’s just two negatives, since it’s switching both of them it’s 
OK.”   

 
By the way, this verbatim once more shows the students’ returning to the numerical to check 
algebraic relations, which is not a bad habit of course. Still, when so asked, Andrew indicated 
that he had several means to check algebraically the equivalence of 

! 

(2 " x)(1" 2x)  and 

! 

(x "2)(2x "1) , such as entering the corresponding equation or expanding them both. The 
students also used these CAS techniques to check their consistency with by-hand results. 
 
To provide a more global view on the meaning of equivalence for the students of both classes, 
we look at one of the posttest items: What does it mean to say ‘two algebraic expressions are 
equivalent?’ Table 1 summarizes the results. The student responses are coded according to 
whether they referred to either numerical substitution and/or common form. This does not mean 
that all responses were fully correct; particularly, some students expressed their ideas in a 
somewhat vague manner. As an example of that, Bryan’s answer was:  

“When a number replaces the x, both expressions will end up having the same answer 
making them equivalent.” 

In his answer, it is not clear if he means ‘all numbers’ or ‘one number’ when he writes ‘a 
number’. Furthermore, he does not mention restrictions, and it is not clear if he thinks of the 
output as being one and the same number for all input values, or only the same for each input 
value.  
 
However, most answers were well formulated. The answer given by Andrew, who referred both 
to common form and numerical substitution, taking into account the restrictions, is exemplary 
of many of the correct responses:  

“This means that if the variable (e.g., x) is replaced by any value the equation would be 
true. There will always be a common form for these 2 expressions. However when 
division is involved there is a possibility of restrictions.” 

 
The posttest results indicate that the numerical substitution view on equivalence dominates. We 
conjecture that students chose ‘the safer way’, which is the numerical view, as the algebraic 
view suffered from the complications of both the idea of common form and some peculiarities 
in the CAS techniques explained above. 
  

Table 1. Posttest results on the meaning of equivalence 
Refer to numerical substitution?   

YES NO  
 2004 2005 2004 2005  

YES 3 0 4 7 14 Refer to  
common form? NO 8 10 1 0 19 
  21 12 33 
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In all, we conclude that the combination of tasks and CAS techniques fostered the extension of 
the notion of equivalence to include an algebraic view. Still, some slippage between both views 
on equivalence was noted. In the posttest, students mostly referred to the numerical view on 
equivalence, probably because this was the first notion encountered, or because of the 
complications with common form and the Test of Equality technique. However, we would like 
to stress that these complications should not be seen as resulting from CAS anomalies, but 
rather as conflicts that arise while coordinating CAS techniques and theoretical thinking within 
the intended design of the tasks. The confrontation of theoretical expectations with CAS output 
turned out to be productive of further reflection. An additional complication, however, while 
using the CAS techniques, was the neglecting of restrictions, which is the topic of the next 
section.  

3.5.3 The issue of restrictions 
The question of how to deal with restrictions, both with CAS and paper-and-pencil techniques, 
played a role in the algebraic view on equivalence. The definition of equivalence, provided in 
the teaching materials, speaks about equivalence on a set of admissible values. This raises the 
issue of restrictions.  
 
The reflection question after the CAS Technique Task (Figure 3) was: Is this equivalence 
subject to any constraints on admissible values of x? This led to the following discussion in the 
2004 class, which, of course, focused on expr1 and expr4 being equivalent, with restriction 

! 

x = "2  (Figure 12). 
 
Teacher   So what happened is that it seems that you are in agreement that the expressions are equivalent, 

but is there something else we should say?  
Maureen   There’s a restriction on the second equation, so it wouldn’t work.  If you plug in  -2  on the first 

equation, it would come out with an answer, a value, but it wouldn’t work for the second one.   
Figure 12. Restriction related to numerical substitution 

 
This indicates that the students linked the notion of restrictions to the numerical view on 
equivalence, which makes sense. They became aware that restrictions should be taken care of, 
and the next question was how to identify them. The following fragments from a classroom 
discussion indicate that the students were able to formulate this (Figure 13). 
 
Teacher What is the restriction, what does it mean?   
Alex  x can’t equal –2.   
Teacher What does it mean, why is that a restriction?   
Alex Because you can’t divide by zero. 

Figure 13. Why does a restriction occur? 
 
Still, individual students struggled with the restrictions. A first problem some of them 
encountered concerned dividing by zero. This was particularly the case for Andrew when he 
was thinking about the equivalence of the third and fifth expressions in the Numerical 
Substitution Task (Figure 2). Let us look at his approach in more detail. At first, Andrew had 
difficulties with identifying the restriction of 

! 

x = "2 . The question to consider the denominator 
revealed a misconception concerning dividing by zero:  

“If x were  -2 then the denominator would be -2 plus 2, which is zero and anything over 
zero is equal to zero. One over zero equals to zero.” 
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The interviewer went on with this, which led to the conclusion that the result of a division by 
zero is undefined. In the next lesson, the equivalence of expr3 and expr5 (Figure 2) was 
considered once more. A new doubt arises in Andrew: 

“But it could be that somehow if –2 is incorporated here [expr3], this is going to be zero 
too, so it could be that my rule isn’t necessarily correct, that the -2 wouldn’t work.” 

 
Andrew was now puzzled about the possibility of another zero appearing somewhere. To check 
this out, he substituted 2!=x  into expr3 and got –84 as a result, clearly not zero. So, he 
concluded: “Basically, it will work with everything except the –2.” Then he substituted 2!=x  
into the expanded form of expr3, which of course gave -84 once more. This seemed to be a 
check for consistency, although he was not completely sure about what to expect. Then Andrew 
wondered about the value of expr5 when 2!=x  would be substituted. He expected -84, but the 
calculator displayed ‘undefined’. He explained this as follows: 

“That’s what I figured out that it should be, undefined, but I didn’t think the calculator 
would show it. Just based on all the other results, just based on the fact that this came 
out to -84, and this came out to –84.” 
(…) 
“Well like it substitutes it and then it fills everything in and anything divided by zero is 
undefined, no matter what the equation is on top, it’s still divided by –2 plus 2, so it’s 
undefined.” 

   
Andrew’s behavior provides a good illustration of the difficulties some students had with 
dividing by zero, and with zero divided by zero. The latter part of the verbatim extract also 
shows how Andrew was trying to coordinate his theoretical thinking with the way CAS deals 
with the restrictions.  
 
This brings us to the second problem concerning restrictions: as Figure 14 shows, the CAS 
equivalence techniques neglect restrictions. This is something most students did not appreciate 
(Figure 15). 
 

 
Figure 14. The TI-92 neglecting restrictions 

 
 
Carey It [the calculator] doesn’t seem to account for any restrictions. 
Interviewer OK, so are we happy with that? 
Carey No, because then it is misleading, because you think there’s no restriction and for any value 

they’re equal to each other. 
Figure 15. Unhappy with the CAS neglecting restrictions 

 
The idea that not showing restrictions was a constraint of the CAS was quite persistent among 
the students. Meanwhile, this limitation urged the students to take care of restrictions 
themselves.  In fact, this is similar to working with paper and pencil, where there is no red light 
flashing when, for example, one multiplies by a factor that might be zero. 
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The complications of restrictions led most students to avoid them. For example, in the 
Construction Task (Figure 4) students were asked to construct an equation made from two 
equivalent expressions. Out of the 26 students of both classes (some were absent), 24 came up 
with examples in which restrictions did not play a role. Only two examples contained 
restrictions:  

a.  11 !
= x

x
  

b. and a quite complicated one: 
4

)127)(356(
)152)(73(

22
2

+

++!!
=!++

x

xxxx
xxx  

A similar observation is made for the posttest. All students but one out of 33 were able to 
construct an equation formed from two equivalent expressions without restrictions. Examples 
of equations formed from two equivalent expressions with exactly one restriction were much 
harder to generate: only 19 out of 33 were able to provide a correct pair of expressions. Among 
the correct answers some were complicated, such as the one written down by Laura: 

)2(

34
4

2

11

!

+
=+

! x

x

x
    2!x  

Among the incorrect answers, we find equations that had more than one restriction, such as 

1

1

1

1

2
!

!
=

+ x

x

x
, and answers that do involve one domain restriction, but where the equivalence 

is not taken care of, such as 
2

2
25

2

+

!
=!
x

x
x . 

 
In all, we notice that the notion of restrictions in relation to equivalence was not easy to grasp. 
The confusion was evoked by the tasks, which involved expressions with restrictions, by the 
definition of equivalence, which spoke about the set of admissible values, and by the fact that 
the CAS techniques neglect the restrictions. In particular, the Test of Equality technique was 
confusing: if there were restrictions, it provided ‘true’, whereas the numerical substitution of 
the restriction provided ‘false’. Furthermore, in the case of non-equivalence, the CAS did not 
reply ‘false’ but just returned the equation, as we discussed in the previous section. Thus, once 
again, the task-technique combination of the teaching sequence and theoretical thinking were 
confronted with each other, with a growing awareness of the issue of restrictions as a result. As 
a side effect, the notion of dividing by zero was revisited. The issue of restrictions was 
encountered once more in the final part of the teaching sequence, when the relation with 
equation solutions was investigated. 
 

3.5.4 Coordination of solving an equation and the notion of equivalence  
Early in the 2005 experiment, while discussing the definition of equivalence, one of the 
students came up with the idea of equivalence meaning equality for some values, namely the 
solutions of the corresponding equation (Figure 16).  

 
Ron I’d define it [equivalence] as an equation where values of x exist that will make both sides equal 

to each other.  
Teacher How many values of x? 
Ron At least one, one or more. 
As an example, Ron suggests x+2 and x/2. 
Teacher x+2 and x/2 are equivalent? 
Ron Could be. 
Teacher Who agrees that these two are equivalent? 
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Judy Only for some values. 
Teacher And does that make them equivalent? 
Ron I think yes. 
Daniel I think equivalence is more like all values of x work except certain restrictions rather than no 

values work except certain restrictions. 
Teacher OK, I think that’s where we’re moving towards.   

Figure 16. Equivalence defined on a finite (!) set of admissible values 
 
It should be noted that Ron’s suggestion is not a bad one at all, if one takes equivalence as 
‘having equal output values on a set of input values’. Still, this interpretation is on a numerical 
and not on an algebraic level. In the classroom discussion, Daniel’s comment at the end of the 
fragment was decisive. Interestingly, he used ‘restrictions’ in two senses – the first in regard to 
restrictions on the equivalence; the second in regard to exceptions to the non-equality of the 
two expressions, that is, the solution(s). Speaking in general, even if students had a correct 
understanding of equivalence, they often mixed up the words ‘equal’ and ‘equivalent’. 
 
The Construction Task (Figure 4) addressed the coordination of equivalence with the 
solution(s) to an equation in more detail. After the students constructed pairs of equivalent 
expressions, the following question was posed: Without solving it, what can you say about the 
solutions of this equation? Table 2 summarizes the results. 
 

Table 2. What to say about the solution of the equation formed from equivalent expressions? 
Type of answer                     n=25 2004 class 2005 class Total 
All values for x are solutions 4 11 15 
All values for x can be substituted 2 0 2 
True / equal / equivalent 6 2 8 

Total   12 13 25 
 

 
In the first category of answers, students claim that all values of x are solutions, or all real 
numbers, or R. A representative example is Léonie’s answer, displayed in Figure 17. In the 
second category, students refer to numerical substitution and not to solving an equation. Still, 
the responses suggest insight into what is happening. An example here is Laura’s answer:  

“Plug in any value for x so solutions will be equal.” 
In the third category, we find a diversity of answers using words like true, equal, equivalent, 
without explicit reference to solutions of the equation. For example, John wrote: 

“They are equal except when x = -4 because the restrictions are x = -4” 
Even if John probably had a good understanding of equivalence, his way of expressing the 
relationship with the solution of equations is not very clear. We conjecture that by, “they are 
equal,” he means that both sides are equal for all values of x, so all values are solutions; but that 
is an optimistic interpretation. 
 

 
Figure 17. Léonie’s answer concerning solutions to equations formed from equivalent expressions 

 
The Construction Task results indicate that the coordination of the notion of equivalence with 
solving the corresponding equation was taking time to be well established for half of the 
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students of those present from the 2004 class. Complicating the issue of the theoretical 
coordination of these ideas was the additional issue of students’ struggling with language, 
especially with the words solve and solution. For example, in response to the question of what 
it means to say that the two given values are solutions of the equation, a representative answer 
was: 

“It means that when the two values are substituted for x, both sides of the equation 
when solved will be the same” 

 
This student probably means by ‘solved’ something like ‘evaluated’ or ‘calculated’. The 
following quote from Andrew, referring to simplified and non-simplified expressions reveals 
the same conception: 

“Well this one, this one isn’t solved yet, they’re both not solved yet.  Yeah, just the last 
one, which is a common form.” 

 
The word ‘solution’ was equally problematic. In the extract provided in Figure 18, Andrew 
answers questions on solutions with arguments on equivalence. At the end, however, he comes 
to see which sense of solution is intended and responds that the number of solutions is infinite 
for the case of equivalence.  
 
Interviewer  How does that help you answer this question, to find the solution?   
Andrew When they’re factored they’re, they look the same, they are equivalent.   
Interviewer  OK, so you just said something about equivalence, but how does that help you find the solutions to 

that equation is what I’m asking.     
Andrew Oh, I don’t understand.   
Interviewer I’m probably confusing you.  What does it mean for a number to be a solution to an equation?   
Andrew That if x is replaced by any value, or that certain value, it will make the expressions equal.   
Interviewer So to relate that back to what you just described a few minutes ago.   
Andrew Oh, so once they’re factored out they are equal to each other.   
Interviewer I see.  How many solutions are there to this equation?   
Andrew Uh, an infinite number.   

Figure 18. Struggling with the word ‘solution’ 
 
Still, most students seemed able to derive enough contextual clues so as to know whether 
equation solutions or some other solutions were being referred to in a given question.  
 
Despite students’ struggles with language issues, the combination of tasks and techniques 
provoked the development of theoretical links among equivalent/non-equivalent expressions, 
equations, and equation solutions for a majority of the students, even if not for all of them. In 
the Posttest Task Q5 (Figure 5), which began with the question regarding the meaning of the 
two given solutions for the provided equation, all but one of the 33 students writing the posttest 
gave a correct answer; 6 of these students (all from the 2004 class) also indicated that this did 
not imply equivalence. As for item (ii) of Q5 – use of a CAS technique to check whether there 
were solutions other than the two that were proposed – 19 out of 33 used the Solve technique; 
the others used less appropriate techniques such as numerical substitution – which does not 
show that there are no other solutions − and the Test of Equality, or did not answer at all (3 
students). Item (iii) of the Posttest Task Q5 concerned the relation between solutions of 
equations and equivalence of expressions. Out of 33 students, 24 correctly indicated that the 
equality was only true for the two solutions, which in 18 cases led to the correct answer, 
namely non-equivalence of the left- and right-hand expressions of the equation. Six others were 
struggling with the idea of ‘equivalence for some values’, stating that the expressions were 
equivalent for the two solutions and not for other values. From the 24 more or less correct 
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answers, 5 students referred only to common form. Some of the students referred to both 
common form and solutions in their answers: “They are not equivalent as only when 2 and 2/3 
are plugged in as values of x are the expressions equal. They cannot be put into common form.” 
 
To conclude this discussion of the issue of coordinating solutions and equivalent expressions, 
we recognize that the results were, to a certain extent, mixed. The combination of different 
CAS techniques as they were proposed in the tasks confronted the students with theoretical 
issues. Some students were really able to relate the set of solutions of the equation to the notion 
of equivalence of the two expressions involved, whereas this remained fuzzy for others. While 
the Solve technique in itself was not a problem for the students, its coordination with 
techniques 2 to 5 on equivalence required a change of perspective, which was not easy for 
them. The fact that some of the students did not refer to the solutions in the third item of the 
Posttest Task Q5 suggests that they preferred to stick to their numerical and/or common form 
views of equivalence. Evidence suggests that a language issue was involved here as well -- 
particularly the fact that students use the word ‘solve’ for any operation leading to a result, the 
result being called the ‘solution.’ 

3.6 Synthesis on the theme of equivalence, equality, and equation 
 
If we consider our findings on the theme of equivalence, equality, and equation in 
retrospective, two main issues come to the fore: the relation between the students’ theoretical 
thinking and the techniques they used for solving the proposed tasks, and the specific role of 
the confrontation of CAS output with the students’ expectations.  
 
To elaborate on the first point, our findings suggest that the importance of the relation between 
Theory and Technique, as it is established while working on appropriate Tasks, can hardly be 
overestimated. On the one hand, the development of the students’ theoretical thinking was 
guided by the techniques that the tasks invited; on the other hand, the students’ conceptions 
influenced the development of these techniques. More specifically in this theme, the students’ 
numerical view on equivalence of expressions was found to be related to three techniques: the 
numerical substitution technique, and, to a lesser extent, the Test of Equality and the Solve 
technique. The fact that students seemed to consider the numerical view of equivalence as the 
more important one (Table 1) links up with their use of the numerical substitution technique to 
check equality. In the emergence of the algebraic view on equivalence, the CAS techniques 
Factor, Expand, Automatic Simplification and Test of Equality played an important role, even 
to such an extent that the factored and expanded forms seemed to be considered as common 
forms (Figures 9 and 10). Finally, for the coordination of the numeric and the algebraic views 
on equivalence, the Solve technique turned out to be provocative. While students had 
difficulties with the coordination of the Solve technique and the techniques on equivalence, the 
discussion of these techniques turned out to be quite productive for the development of 
students’ theoretical thinking (Figure 17). In short, all through the teaching sequence the co-
emergence of techniques and theoretical understanding was observed as being an important 
issue in the learning process. 
 
To elaborate on the second point, the data analysis revealed that a most productive form of 
learning took place after the CAS techniques provided some kind of confrontation or conflict 
with the students’ expectations. The students’ seeking for consistency evoked theoretical 
thinking and further experimentation. This phenomenon primarily concerned the algebraic view 
of equivalence. For example, the fact that the available CAS techniques easily provide factored 
and expanded forms may have contributed to the idea that common form meant simplified, 
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basic form, which came down to factored or expanded form (Figures 9 and 10). This conflicted 
with the notion of common form as it was introduced in the student materials. Also, the fact 
that the CAS Automatic Simplification technique and the Test of Equality both neglect 
restrictions led to an increasing awareness of the importance of these ‘exceptions’ (Figures 12, 
13 and 15). Finally, the CAS just returning an equation in cases of non-equivalence struck the 
students, and gave rise to interesting discussions on the interpretation of the output, as did the 
interpretation of ‘true’ and ‘false’ in cases of numeric or algebraic application of the Test of 
Equality (Figure11). Even if such complications in applying CAS techniques may seem to be 
hindrances to students’ progress (see also Drijvers, 2002), in fact our experience suggests that 
they should be considered occasions for learning rather than as obstacles. However, a 
precondition for these complications to foster learning is their appropriate management in the 
classroom by the teacher.  
 
All in all, the teaching sequence revealed a strong interaction among task, technique, and 
theory, in which the CAS use − sometimes in combination with language issues − resulted in 
extra complications, which led to interesting and enriching thoughts and discussions, all of 
which fostered conceptual growth.  
 

4 The theme of generalizing and proving within factoring  

4.1 Aims of the teaching sequence 
 
The activity that exemplifies this theme is inspired by the work of Mounier and Aldon (1996) 
who presented to their classes of 16- to 18-year-old students the task of conjecturing and 
proving general factorizations2 of xn !1 . While access to CAS improved students’ explorations 
of various factorizations for given integral values of n, they had difficulty in moving toward an 
awareness of the general regularities envisaged in the task. Lagrange (2000) has pointed out 
that the fact that the CAS produces complete factorizations was working at odds with the 
mathematical aims of Mounier and Aldon. In contrast, our research group decided to use this 
particular CAS phenomenon to provoke in the 15-year-old student-participants of our study a 
confrontation with their existing, but limited, theoretical thinking on factoring. The intended 
overall aim of the two-lesson teaching sequence was thus to develop in students not only the 
notion of a general form of factorization for xn !1 , but also its relation to the complete 
factorization of particular cases, as well as to initiate them to the proving of one of these cases. 
  

4.2 Task 
 
We set about designing the activity in three parts (see Figure 19 for an overview). The first 
part, which involved CAS as well as paper and pencil (P&P), linked students’ past experience 
with factoring to the generalization that they would be working towards regarding the factoring 
of xn !1 . The initial set of tasks was oriented towards noticing a particular regularity in the 

                                                
 
 
2 Some general factorizations of 

! 

x
n

" 1  are the following: 

! 

x
n

" 1 = (x " 1)(x
n"1

+ x
n" 2

+ ...+ x + 1)  for positive 

integers 

! 

n ; 

! 

x
n

" 1 = (x " 1)(x + 1)(x
2

+ 1)...(x
n / 2

+ 1)  for every 

! 

n  that is a power of 2. 
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factored examples of the xn !1  family of polynomials for positive integral values of n and the 
justification of the form of these products. As is illustrated by the sample questions provided in 
Figure 20 (for the complete set of tasks, see Kieran and Saldanha, in press), the task also aimed 
at promoting an awareness of the presence of the factor 

! 

x "1 in the given factored forms of the 
expressions 

! 

x
2
"1, 

! 

x
3
"1, 

! 

x
4
"1, 

! 

x
5
"1, and 

! 

x
16
"1. To promote generalization of the form 

! 

x
n
"1= (x "1)(x

n"1
+ x

n"2
+ ...+ x +1) , students were then asked their opinion concerning the 

validity of the equality presented in Question 6. After students began to conjecture a general 
rule for the factorization of the xn !1 family, they were requested to reflect on how they might 
express this conjecture by means of symbolic notation, using the symbol n for the exponent, 
rather than specific integers. 
 
 

 
 

Part I 
Part II 
Part III 

Activity on Factoring 
 

Seeing patterns in factors and moving toward a generalization 
Refining a generalization – with conjecturing and reconciling 
Proving 

Tools 
 

CAS/P&P 
CAS/P&P 

P&P (mostly)/CAS 

Figure 19. Outline of the teaching unit 
 

 
1. Perform the indicated operations: (x – 1)(x + 1); (x – 1)(x2 + x + 1). 
2. Without doing any algebraic manipulation, anticipate the result of the following product 

! 

x " 1( ) x
3

+ x
2

+ x + 1
# 
$ 

% 
& =  

3. Verify the above result using paper and pencil, and then using the calculator. 
4. What do the following three expressions have in common? And, also, how do they differ?    

(x – 1)(x + 1), (x – 1)(x2 + x + 1),  and 

! 

x " 1( ) x
3

+ x
2

+ x + 1( ) . 
5. How do you explain the fact that when you multiply: i) the two binomials above, ii) the binomial 

with the trinomial above, and iii) the binomial with the quadrinomial above, you always obtain a 
binomial as the product? 

6. Is your explanation valid for the following equality: 

! 

(x " 1)(x
134

+ x
133

+ x
132

+ ...+ x
2

+ x + 1) = x
135
" 1? Explain.  

Figure 20. Some of the initial tasks of the activity 
 
The next section of the activity engaged students in confronting the paper-and-pencil 
factorizations that they produced for n from 2 to 13 with the completely factored forms 
produced by the CAS, and in reconciling these two factorizations (see Figure 21; note that the 
expressions for which n varies from 7 to 13 are not shown). We conjectured that students 
would begin this part of the activity by applying the general rule that they had just formulated. 
The confrontation of their paper-and-pencil factoring with the factors produced by the CAS 
was intended to encourage students to reflect upon their existing notions of factoring with 
respect to, among others: (i) complete factoring, and (ii) the impact of the nature of the 
exponent on the ways in which the factoring process can be approached, as well as on the final 
form of the factors.  
 

In this activity each line of the table below must be filled in completely (all three cells), one 
row at a time. Start from the top row (the cells of the three columns) and work your way 
down. If, for a given row, the results in the left and middle columns differ, reconcile the two 
by using algebraic manipulations in the right hand column.  
Factorization using 
paper and pencil 

Result produced by the 
FACTOR command 

Calculation to reconcile the two, 
if necessary 
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=!1
2
x  

  

=!1
3
x  

  

=!1
4
x  

  

=!1
5
x  

  

=!1
6
x  

  

Figure 21. Task in which students confront the completely factored forms produced by the CAS 
 
 
In order to have students reflect upon the relations between particular expressions of the 
x
n
!1 family and their completely factored forms − as suggested by the entries in the table they 

had just been completing − they were asked to generate conjectures regarding the nature of 
some of these relations (Figure 22).  
 

Conjecture, in general, for what numbers n will the factorization of xn − 1: 
i) contain exactly two factors? 
ii) contain more than two factors? 
iii) include 

! 

x + 1( )  as a factor? 
Please explain. 

Figure 22. Task in which students examine more closely the nature of the factors produced by the CAS 
 

 
The final part of the activity centered on students’ further technical and theoretical 
development with a task on proving the conjecture that 

! 

x +1 is always a factor of xn !1  for 
even values of n. Access to the students’ reflections was facilitated by having them present 
their proofs at the board, and by encouraging classroom discussion, query, and reaction. 

4.3 Technique 
 
Figure 23 provides an inventory of the main techniques that could be used – both with CAS and 
with paper and pencil – on the above tasks of generalizing and proving within factoring.  
 
Technique CAS variant (using TI-92 Plus) Paper-and-Pencil variant  
1. Expanding an expression 

completely 
Expand command Expanding all of the expression by 

hand, combining like terms, and 
ordering final terms 

2. Expanding a sub-expression Expand command, using as argument 
the desired part of the expression 

Expanding, by hand, usually two 
factors of the given expression 

3. Factoring completely an 
expression (if factorable) 

Factor command Factoring by hand, often with a 
choice of several possible methods 

4. Factoring a sub-expression Factor command, using as argument the 
desired part of the expression. The CAS 
may not always succeed in this regard. 

Factoring, by hand, a particular 
factor of a given expression, often 
with a choice of methods possible 

5. Using symbolic notation to 
express the general factored 
form of an expression 

No command exists that will factor an 
expression whose exponents are 
expressed in general symbolic form. 

Factoring the general form, by 
hand, with appropriate symbolism 
for the exponents  

Figure 23. CAS and paper-and-pencil techniques for this activity 
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Some comments are in order regarding these techniques. First, the relation between the above 
CAS techniques and the corresponding paper-and-pencil techniques would appear to be very 
close in most cases. But, indeed, they are not that close, as will be seen shortly in the student 
work dealing with the reconciling of the results of both. While the CAS uses a black-box 
method, several variants can be available for paper-and-pencil methods. For example, in those 
expressions of the 

! 

x
n

"1 family of polynomials where the exponent has three or more divisors, 
an assortment of paper-and-pencil factoring methods can be used to achieve complete 
factorization; for instance, 

! 

x
6
"1 can be approached as a difference of squares 

! 

(x
3
)
2
"1 , a 

difference of cubes 

! 

(x
2
)
3
"1 , or according to the general rule 

! 

(x "1)(x
5

+ x
4

+ x
3

+ x
2

+ x +1) 
followed by further factoring of the terms in the second factor by grouping.3  
 
Second, the task of reconciling paper-and-pencil and CAS factors can involve a combination of 
the techniques mentioned in Figure 23: 
i) Using the CAS command Expand (or paper and pencil) to multiply various CAS factors 

in order to obtain some of the factors that were derived from an initial paper-and-pencil 
technique that involved the general rule; 

ii) Refactoring with paper and pencil the given expression to obtain the CAS factors (e.g., 
treating the given expression as a difference of squares if the exponent is divisible by 2, 
or as a difference of cubes if the exponent is divisible by 3); 

iii) Refactoring with paper and pencil (or CAS) the not-yet-completely factored part of the 
paper-and-pencil work in order to obtain the factors produced by the CAS (e.g., 
‘factoring by grouping’). 

 
Third, although the CAS (in our case, the TI-92 Plus) can be used to expand any given 
partially-factored expression, it cannot necessarily undo this expansion by factoring. For 
example, the CAS factors completely the expression 

! 

x
10
"1 as  

! 

(x "1)(x +1)(x
4

+ x
3

+ x
2

+ x +1)(x
4
" x

3
+ x

2
" x +1). 

However, if one factors with paper and pencil the expression 

! 

x
10
"1 as 

! 

(x "1)(x
9

+ x
8

+ x
7

+ x
6

+ x
5

+ x
4

+ x
3

+ x
2

+ x +1), 
the CAS cannot refactor completely the expression 

! 

(x
9

+ x
8

+ x
7

+ x
6

+ x
5

+ x
4

+ x
3

+ x
2

+ x +1) . It simply produces 

! 

(x +1)(x
8

+ x
6

+ x
4

+ x
2

+1)  
as is illustrated in Figure 24.  
 

 
Figure 24. Factoring 

! 

x
10
" 1 with the TI-92 Plus 

 
                                                
 
 
3 Factoring a polynomial expression such as 

! 

x
5

+ x
4

+ x
3

+ x
2

+ x + 1 by ‘grouping’ involves arranging the terms 
in groups so as to enable factoring: e.g., 

! 

(x
5

+ x
4
) + (x

3
+ x

2
) + (x + 1)  = 

! 

x
4
(x + 1) + x

2
(x + 1) + 1(x + 1) = 

! 

(x + 1)(x
4

+ x
2

+ 1)  = 

! 

(x + 1)(x
2

+ x + 1)(x
2
" x + 1) . There may be more than one way to group terms. 
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Lastly, we wish to point out that this teaching sequence calls upon a kind of symbol sense 
(Arcavi, 1994) and global, meta-level processes (Kieran, 1996) that do not involve techniques 
as such, and for which a given CAS or paper-and-pencil technique cannot be specified. 
Examples of such processes include looking for patterns, perceiving different ways of 
structuring a given expression, conjecturing, predicting, and so on.  However, CAS and paper-
and-pencil techniques can be used to test the objects of these mental processes, be they 
conjectures, or predictions, or others, by for example generating a multiplicity of examples. 

4.4 Theory 
 
According to the TTT framework that is the integrating thread of this research, a student’s 
mathematical theorizing is deemed to be intertwined with the techniques that are used with, and 
that co-emerge within, the given tasks. Thus, for the tasks and techniques presented above, we 
distinguish a priori the following three theoretical elements. 
 

1. Patterns in the factors of 

! 

x
n

"1: Seeing a general form and expressing it symbolically 
While techniques 1 and 3 (Figure 23) are used in testing the early conjectures related to 
factoring and expanding a few expressions of the 

! 

x
n

"1 family of polynomials, the 
technical work is superceded by the processes used in recognizing patterns and in 
generalizing them. However, expressing a general factorization for 

! 

x
n

"1 with symbolic 
notation goes beyond the use of these processes. Technique 5, a technique for 
representing the general factorization 

! 

x
n

"1 = (x "1)(x
n"1

+ x
n" 2

+ ...+ x +1)  involves 
knowing, at least, how to express decreasing powers of the exponent n, that these 
decreasing powers continue to 

! 

n " n , that 

! 

x
n"n  is equivalent to 

! 

x
0, that 

! 

x
0 is equivalent 

to 1, and that the ellipsis symbol (‘…’) is used to indicate the undefined middle terms of 
the second factor.  
 

2.  Complete factorization: Developing awareness of the role played by the exponent in 

! 

x
n
" 1 

The notion of complete factorization can come to the fore as soon as students attempt to 
factor an expression with a non-prime even exponent, such as 

! 

x
4

"1, according to the 
general rule, and are confronted with a CAS factorization that they do not anticipate. The 
technical work of reconciling paper-and-pencil factors with CAS factors is considered by 
us to be an important part of the process of extending students’ theoretical views on 
factoring. The refinement of student thinking with respect to the factoring of the 

! 

x
n

"1 
family includes a focus on the nature of the exponent and how it bears on the form of the 
completely factored expression. Another issue concerns the developing awareness that 
certain exponents can be viewed structurally in different ways and that the expression can 
thus be factored in different ways, but that the final CAS factorization is complete. 
Reflection on these issues is related to techniques 1 to 4.  
 

3.  Proving: Theorizing more deeply on the factorization of 

! 

x
n
" 1 

The notion that one can actually go about proving some of the empirical observations 
made during this factoring activity is an important theoretical development in students’ 
mathematical thinking. Provision for this notion is offered by the task on proving that 

! 

x +1 is always a factor of 

! 

x
n

"1 for even values of n, and is supported by techniques 1 to 
5. Proving this conjecture involves theorizing about and coordinating several ideas, 
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including those related to odd, even, and prime exponents, as well as those that concern 
the forms of the completely factored expressions of the 

! 

x
n

"1 family of polynomials. 

4.5 Analysis of student data 
 
While the three theoretical elements outlined above provide the framework for this section, the 
analysis is presented in such a way as to permit a view of the emergence of students’ notions as 
they evolved over time, in interaction with the techniques invited by the tasks.  It is noted that 
the analysis in this section is drawn from data collected in one of the 10th grade classes featured 
in the previous section, that of the 2004 class. 

4.5.1 Patterns in the factors of 

! 

x
n

" 1: Seeing a general form and expressing it 
symbolically   
Students’ prior work with factoring expressions related to xn !1  had focused almost 
exclusively on the difference of squares, 

! 

a
2
"b

2
= (a + b)(a " b) , and the sum and difference of 

cubes, 

! 

a
3

+ b
3

= (a + b)(a
2
" ab + b

2
)  and 

! 

a
3
"b

3
= (a "b)(a

2
+ ab + b

2
) . At the outset of the 

activity, they experienced little difficulty in performing the indicated operations for 

! 

(x "1)(x +1)  and for 

! 

(x "1)(x
2

+ x +1) , and in using the patterns suggested by these factored 
forms to anticipate the product of 

! 

x "1( ) x
3

+ x
2

+ x +1( ) . The latter was verified with both 
paper and pencil and CAS. 
 
The students described the patterns that they were noticing in the factored expressions, 

! 

x "1( ) x +1( ) , 

! 

x "1( ) x
2

+ x +1( )  , and 

! 

x "1( ) x
3

+ x
2

+ x +1( ) , using language such as, “ The first 
brackets all consist of 

! 

x "1; the second brackets though increase by an 

! 

x  with one more power 
than the previous 

! 

x .”  They also justified the fact that the expansion of all of these factored 
expressions produced a binomial: “Because the middle terms cancel out which creates 
binomials” -- such justifications resulting from their paper-and-pencil expanding techniques. 
The fact that they were beginning to see a general rule as a result of this patterning work was 
quite evident from their prediction of the factorization of 

! 

x
5
"1 as 

! 

(x "1)(x
4

+ x
3

+ x
2

+ x +1) . 
 
However, when asked to extend their reasoning to expressions containing higher exponents, 
such as 

! 

x
135
"1, some students expressed a need to check their generalization with the CAS 

(Figure 25). 
  
Laura   Can we check it [the factorization of x135 - 1] with the calculator? 
Teacher    You could do it, but you don’t need to. 
Laura   But how are we supposed to know if it's valid or not? We can assume it is, but we don’t know for 

sure. 
Teacher    We can, by just the same reasoning as before. 

Figure 25. For 

! 

x
135

" 1 , this student wanted to check her generalization by using the CAS 
 
While students had experienced little difficulty in arriving at a generalization of the factoring 
pattern with which they were working, a significant obstacle presented itself when the teacher 
initiated a discussion on the symbolic representation of this general form of factorization for the 
expression xn !1with the question: “Can we now find a way of expressing a general 
factorization of the expression 

! 

x
n

"1 for integral values of n?”  
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When the teacher wrote 

! 

x
n

"1 on the board, and reiterated his question with: “Can we factor 
that?”, students immediately wondered about the use of the variable n rather than a specific 
integer (Figure 26). 
 
Ellen   Is that an n? 
Teacher  That’s an n. 
Some students  No, we do not know what n is. 
Teacher   Well, n is any integer, any positive integer. 

Figure 26. An obstacle in dealing with a general formulation of the pattern: the use of n for the exponent 
 
As students began to consider how they might express the pattern they had been observing with 
various numerical values for the exponent in 

! 

x
n

"1, one student offered: “

! 

(x "1)(x
n"1

+ x
n"2  ”, 

but then suddenly stopped and remarked, “But I don’t know how far to go.”  This was echoed 
by several others in the class. The teacher then suggested: “Go down to 

! 

x +1, as with the 
others,” while he continued to write at the board:   . . .  

! 

+x +1) .  This provoked immediate 
confusion in the class, with several students wanting to speak at once (see Figures 27 and 28). 
 
Ellen  Shouldn’t it be n plus one for the first one? ‘Cause you know you're multiplying the x 
Teacher   For this one? [Points to first term of second factor: xn-1 ] 
Ellen Yeah. 
Teacher   Let's just look at how we do this. We're doing x [Draws a red line starting under the x and linking it 

with the xn-1 in the second bracket, see next Figure].  
           We do that, what do we get? 
Ellen  x to the n minus one. 
Teacher   So, x to the n [Writes on board: xn].  
           x times x to the n minus one is x to the n. [Pauses] Yeah?  
Class     [Expressions like:] Yeah, Oooh, Ahhh, Yeah. 
Teacher   You should add the exponents, n minus one, plus one is n. So you get that. Now look at the next 

one, if I do this [Draws a red dotted curved line linking the x with xn-2 , see next Figure].  
Figure 27. Students’ difficulty with using general notation for the factoring of 

! 

x
n

" 1 
              

 
Figure 28. Teacher at the board, explaining the mechanics of the general factored form for 

! 

x
n
" 1 

 
On examining the general factored form for 

! 

x
n

"1, which the teacher had been writing and 
explaining at the board, another student asked once again: “If it’s decreasing, how far down do 
you go?” He was also somewhat mystified by the use of the ellipsis symbol in the same second 
factor, as suggested by his remark, “I don’t like the dots either; I don’t think it’s a real answer.”  
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All in all, the students seemed to arrive quite easily at a generalization regarding the pattern 
suggested by the factoring examples of this first set of tasks. Their CAS use served to confirm 
their initial conjectures and provide support, whenever needed, for those expressions involving 
quite large exponents. However, the hardships the students experienced with making sense of 
the symbolic formulation for the general factorization for 

! 

x
n

"1 point to the difficulties that are 
inherent in such polynomial notation involving non-numerical exponents for students of this 
age range and algebraic background. 

4.5.2 Complete factorization: Developing awareness of the role played by the 
exponent in 

! 

x
n

" 1  
 
After students had encountered the formulation of a general factorization for 

! 

x
n

"1 for integral 
values of n, they moved into Part II of the Activity, which led to a confrontation with their 
existing ideas on factoring. Their first surprise arrived when they entered Factor 

! 

(x
4
"1)  into 

their CAS, which yielded 

! 

(x "1)(x +1)(x
2
+1) , in contrast with 

! 

x "1( ) x
3

+ x
2

+ x +1( ) , which 
all of them had written for their paper-and-pencil version. It did not take long before students 
could be heard commenting, “it can be factored further,” “it’s not completely factored,” “it 
gives you all the factors,” and so on. 
 
To reconcile the CAS factors with their own paper-and-pencil factors for 

! 

x
4

"1, students did 
the following:  

i) Multiplied the second and third CAS factors to produce their second paper-and-
pencil factor (Figure 29a, half the students),  

ii) Factored by ‘grouping’ the second paper-and-pencil factor to produce the second 
and third CAS factors (Figure 29b, a little fewer than half the students), and  

iii) Refactored the given 

! 

x
4

"1 as a difference of squares (Figure 29c, one student).  
 
For some students, the first of the three methods of reconciliation had initially been carried out 
with the CAS (using Expand) and then transferred to paper. However, most of the 
reconciliation work was done with paper and pencil, as had been requested by the teacher. 
 

 
Figure 29a. Reconciling by multiplying the second and third CAS  
factors of 

! 

x
4

" 1 to produce the second paper-and-pencil factor 
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Figure 29b. Reconciling by ‘grouping’ the second paper-and-pencil factor  

to produce the second and third CAS factors of 

! 

x
4

" 1 
 
 

 
Figure 29c. Reconciling by refactoring the given 

! 

x
4

" 1 as a difference of squares 
 
 
In the class discussion that followed the completion of the first set of examples for n from 2 to 
6 in the factoring of xn !1 , some clarification of the notion of complete factorization took 
place, which included the teacher’s comment that: “Sometimes, they can be factored further. 
What we did initially is not wrong, it’s just not complete.” The discussion also permitted 
students to learn how others in the class were approaching the task of reconciling their paper-
and-pencil factors with the CAS factors. The notion that expressions with even exponents 
greater than 2 could also be regarded as a difference of squares was not obvious for some 
students, as suggested by the remark uttered by one student: “I can’t get [the factors of] 

! 

x
4

"1.” 
Furthermore, while it was mentioned by a few students that 

! 

x
6
"1 could be treated either as a 

difference of squares, 

! 

(x
3
)
2
"1 , or as a difference of cubes, 

! 

(x
2
)
3
"1 , the upcoming task which 

involved the factoring of 

! 

x
9
"1 was to provide evidence that seeing a difference of cubes was 

even more difficult for some students than seeing a difference of squares.  
 
Before continuing the next part of the task for xn !1 , with values of n from 7 to 13, the 
students were asked whether they had observed any new patterns emerging from their 
factoring: Were there some exponents for which the general rule was providing a complete 
factorization and others for which this was not the case? Based on their limited set of examples 
thus far, it was inevitable that most students would generate the conjecture that, for odd values 
of n, the general rule seemed to be holding. In other words, they thought that the complete 
factorization of 

! 

x
n

"1 had exactly two factors for odd 

! 

ns; while for even values of 

! 

n , it 
contained more than two factors, one of which was 

! 

(x +1) . The conversation between two 
students, which is presented in Figure 30, illustrates how the CAS helped them realize that their 
conjecture regarding odd 

! 

ns was incorrect. They followed up on this new awareness with 
further odd-number replacements for n, which led them to notice the multi-factor effect of 
“certain odd numbers that are divisible by 3, 5, 7,” and eventually to hit upon the idea of prime 
numbers for the exponent.  
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Chris  ‘Two factors’ means two separate sets of brackets, right? 
Peter  Yeah. 
Chris  The only time it contains two factors is when it is odd, I think, which means it can be, [pause] like, 

our pattern can’t be broken down anymore. ‘Cause it always ends up being all positive. And uh, 
then, because, it’s sort of hard to explain. 

Peter When the exponent is [pause], when the exponent is an even number you’ll have more than two 
factors, but when the exponent is not an even number, you’ll have exactly two factors all the time. 

Chris Yeah. [Types Factor

! 

(x
7
" 1)  into the CAS]  

 Yeah, because any time you plug in an odd number as the exponent power, it’s uh, the calculator 
always stays at the most simplified [pause] and [Types in Factor

! 

(x
9
" 1) ; the CAS displays: 

! 

(x " 1)(x
2

+ x + 1)(x
6

+ x
3

+ 1) ]  
 And, no!!! [a look of utter surprise on Chris’s face] 

Figure 30. Testing examples with the CAS led these students to realize that their initial conjecture was incorrect 
  
 
In light of the classroom discussion related to confronting paper-and-pencil factors with CAS 
factors for the expressions from 

! 

x
2

"1 to 

! 

x
6
"1, some students began to adjust their paper-and-

pencil factoring techniques with the aim of “playing a game” with the CAS. They tried to 
anticipate what it would produce as its factored form, for the expressions from 

! 

x
7

"1 to 

! 

x
13

"1, 
and thereby to reduce the amount of reconciliation that would need to be done. However, 
certain values of n – in particular, 9 and 10 – proved more difficult than others for the students.  
 
In fact, the expression 

! 

x
9
"1 pushed a significant number of them to the limits of their current 

thinking on factoring. A few erroneously handled the expression as if it were a difference of 
squares, 

! 

(x
3

+1)(x
3
"1) , or as a “sort-of difference of squares,” 

! 

(x
3
"1)(x

6
+1) . Others used the 

general rule. When they compared their paper-and-pencil factors with the CAS factors, they 
came to the realization that the CAS had produced a factored form that they were unable to 
obtain themselves. Even those who had used the general rule for 

! 

x
n

"1 and who could 
reconcile their factorization with the factors produced by the CAS  – by multiplying all the 
CAS factors except 

! 

(x "1)  to produce their second paper-and-pencil factor – were still not 
satisfied. They insisted on knowing how to factor 

! 

x
9
"1 themselves, and explicitly requested 

such help from the teacher: “How do you get those factors?”  The teacher suggested that they to 
try to “see” 

! 

x
9 as 

! 

(x
3
)
3 , and thus 

! 

x
9
"1 as 

! 

(x
3
)
3
"1 , which could then be treated as a difference 

of cubes, which they supposedly knew how to factor.  
 
Within this part of the task where students were confronting their paper-and-pencil factors with 
the CAS factors, the CAS played a role that was quite different from that which it had played in 
other parts of the activity. The CAS technique of Factor, with its accompanying output, 
disclosed to the students that there were certain factoring techniques that they were missing 
from their repertoire. As a consequence, they wanted to learn these techniques. This need to 
understand the factored CAS outputs and to be able to explain them in terms of a certain 
structure, or by means of paper-and-pencil techniques that would produce the same results, 
seemed important to the students (and to us!).  
 
In all, the confrontation of students’ paper-and-pencil factors with the CAS factors led to the 
development of new theoretical ideas. In the process of making sense of the CAS factors, the 
students extended their view of the range of the difference-of-squares technique. They also 
came to see that exponents that have several divisors can generally be factored in more than 
one way. They began to look at expressions in terms of multiple possible structures. Their 
understanding of the notion of complete factorization evolved. Finally, as will be seen in the 
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next section, some students were even able to detect new patterns, and with the aid of the CAS, 
developed another general rule.    

4.5.3 Proving: Theorizing more deeply on the factorization of 

! 

x
n

" 1  
 
As the concluding activity of the sequence, students were presented with the task of proving 
that 

! 

x +1 is always a factor of 

! 

x
n
"1 for even 

! 

ns. During its early discussions related to task 
design, the research team had produced several proofs for this problem, including:  
  

xn – 1 = x2k – 1  (for n even) 

= (x2)k – 1 

= (x2 – 1)(x2

! 

k" 1

 + x2

! 

k" 2

 …  + 1) 

= (x + 1)(x – 1)(      …       ) 
 
However, the students of this study had not had any prior experience with proving. 
Furthermore, Mounier and Aldon’s (1996) report had not included any elements of students’ 
proofs with general factorisations of 

! 

x
n
"1. As well, the existing research literature on proof 

methods in algebra with this age group of student has tended to focus on number theoretic 
proofs (e.g., Healy and Hoyles, 2000; see also Mariotti, 2006) rather than on proofs of the kind 
of problem we were proposing. Thus, we were not sure what the 15-year-old students of our 
study would be able to do with it. 
 
After having given the class about 15 minutes to work on the task and having circulated during 
this time in order to see what kinds of proofs the students were attempting, the teacher invited 
selected students to come to the board, one at a time, to present their work and discuss it with 
the class at large.  
 
One of the first “proofs” that was proposed was the following by Paul: “When n is an even 
number greater than or equal to 2, 

! 

x
2

"1 is always a factor, and so 

! 

x +1 is a factor.” However, 
he could not really show or explain why 

! 

x
2

"1 is always a factor.  
 

A rather different approach to the task was presented by Janet (Figure 31). The proof, which 
she and her partner had constructed, was generic in that it embodied the structure of a more 
general argument. From their earlier work on reconciling CAS factors with their paper-and-
pencil factoring, which had been based on the general rule for 

! 

x
n

"1, they had noticed that for 
even 

! 

ns, the number of terms in the second factor was always even. Janet argued as she 
presented her proof at the board, using 

! 

x
8

"1 as an example, that it would work for any even n. 
She explained how the terms of the second factor could be grouped pair-wise, yielding a 
common factor of 

! 

(x +1) : 

! 

x
8
"1  = 

! 

(x "1)(x
7

+ x
6

+ x
5

+ x
4

+ x
3

+ x
2

+ x +1) 
    = 

! 

(x "1)(x
6
(x +1) + x

4
(x +1) + x

2
(x +1) +1(x +1)) 

    = 

! 

(x "1)(x +1)(x
6

+ x
4

+ x
2

+1)  
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    Figure 31. Janet’s proof by grouping 

 
In yet another approach, one that was related to Paul’s difference-of-squares “proof”, Bryan 
(who had earlier experienced difficulty in making sense of general symbolic notation) came to 
the board and wrote 

! 

x
n

"1 = (x
n / 2

+1)(x
n / 2
"1) , while stating that, if the exponent n is even, 

then it can be divided by 2. He then tried to start a proof involving the factor 

! 

(x
n / 2

+1) , but 
could not make progress. His team-partner, Andrew, came forward to continue the proof and 
share the conjecture that their small group had come upon in the earlier task involving the 
reconciling of paper-and-pencil factors with CAS factors. It seems that when these students had 
been working on the expression 

! 

x
10

"1, they had factored it as 

! 

(x
5

+1)(x
5
"1) , the latter part of 

which they refactored according to their general rule and subsequently wrote on their sheets: 

! 

x
10

"1 = 

! 

(x
5

+1)(x "1)(x
4

+ x
3

+ x
2

+ x +1) . But the CAS produced as its factored form 

! 

(x "1)(x +1)(x
4

+ x
3

+ x
2

+ x +1)(x
4
" x

3
+ x

2
" x +1) . They then looked at the factors that the 

CAS had output for 

! 

x
5

+1: 

! 

(x +1)(x
4
" x

3
+ x

2
" x +1) . Andrew noticed something important: 

“Isn’t that how it works for the sum of cubes?”  So, they began to conjecture and test a general 
rule for the following factorization: 

! 

x
n

+1= (x +1)(x
n"1
" x

n"2
+ ..." x +1) . 

 
Andrew, in presenting this conjecture to the class, insisted that, even though “it does not seem 
to work for even 

! 

ns, it is true for all odd numbers 

! 

n , and 

! 

x +1 would always be a factor of it.” 
While Andrew and Bryan never actually proved that 

! 

x +1 is a factor of 

! 

x
n

+1 for all odd ns, 
they had succeeded in providing the missing link for Paul’s difference-of-squares proof. A 
proof of Andrew’s and Bryan’s ‘rule’ might have been approached by applying some of the 
grouping ideas that had been used by Janet, along with the addition of zero-based pairs for the 
missing terms (i.e., a generic proof where 5 in 

! 

x
5

+1 represents any odd positive integer): 
 

! 

x
5

+1  = 

! 

x
5

+ x
4
" x

4
" x

3
+ x

3
+ x

2
" x

2
" x + x +1  

= 

! 

x
4
(x +1) " x

3
(x +1) + x

2
(x +1) " x(x +1) +1(x +1)  

= 

! 

(x +1)(x
4
" x

3
+ x

2
" x +1)  

 
Although the grouping proof by Janet was the only one to have clearly established that 

! 

x +1 is 
always a factor of 

! 

x
n

"1 for all even values of n, the proving activity provided for the 
development of several other key mathematical notions related to the factoring of 

! 

x
n

"1. The 
difference-of-squares “proof”, for example, with its accompanying treatment of the case 

! 

x
n / 2

+1, for odd values of 

! 

n /2 , served to extend the thinking of students in the class. The 

! 

x
n

+1 conjecture, which had issued from the earlier work of a group of students with the 
factoring of 

! 

x
10

"1, helped others to integrate their ideas about odd, even, and prime exponents 
– theoretical ideas that had been generated in interaction with the various CAS and paper-and-
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pencil techniques that had evolved throughout the entire factoring activity, but especially 
during that part of the activity on reconciling CAS and paper-and-pencil factors. 
 

4.6 Synthesis on the theme of generalizing and proving within factoring 
 
While theoretical elements have been the organizing principle of this presentation of student 
activity, their emergence among the students would not have been possible without the 
accompanying technical demands raised by the tasks. In fact, the development of CAS 
techniques, simple as they were in most cases, was vital to theoretical advances in at least four 
different respects.  
 
One involved the confrontation of the CAS factored forms with those that students produced by 
paper and pencil – based on their existing techniques, including the newly generalized rule for 
factoring 

! 

x
n

"1. This confrontation was found to be very productive for most students, but 
especially so for those who, upon realizing that they could not generate the same factors as had 
the CAS, insisted on finding out how to do so either from the teacher or from individual peers 
or during the follow-up classroom discussions. These CAS encounters resulted in the evolution 
of not only students’ paper-and-pencil factoring techniques but also their theoretical perception 
of the structure of expressions (e.g., seeing that 

! 

x
6
"1 could be viewed either as a difference of 

squares, or as a difference of cubes, or as an example of the general rule that they had earlier 
generated). These same encounters also led to insights that provided students with the technical 
and theoretical tools needed for the proving part of the activity. 
 
A second way in which CAS techniques were constitutive of theoretical advances for the 
students involved their noticing in a CAS output a certain structure that they had not noticed in 
prior examples. As we have seen, this led to the serendipitous discovery by a group of students 
of a rule for the factoring of 

! 

x
n

+1, for all odd 

! 

ns. A third way was directly related to the 
nature of the reflection questions such as, for example, “Conjecture, in general, for what 
numbers n will the factorization of 

! 

x
n

"1 contain exactly two factors?” To answer this 
question, students first formed a tentative conjecture based on the examples they had already 
generated, and then tested their conjecture by means of their CAS techniques, Factor and 
Expand. The ‘to-ing and fro-ing’ between conjecturing and testing was illustrated in the search 
for the elusive prime-number response to the question. In such activity, the CAS commands 
seemed to be more a part of the background than a center-stage player. The issue was not the 
relation between the form of the output and the command itself – as was the case in the 
confrontational role played by the CAS output – but rather the use of CAS techniques as a 
servant in obtaining results to questions of a quite different sort. 
 
Finally, CAS techniques, in accompaniment with paper-and-pencil techniques, were found to 
play a role in the deepening of theoretical thinking. For example, after students had explored 
empirically the question of those values of 

! 

n  for which the factorization of 

! 

x
n

"1 includes 

! 

x +1 as a factor, they later went on to attempt to prove that this is always the case for even 
values of 

! 

n . Such a task involved mobilizing and coordinating several pieces of theory that had 
emerged throughout the activity. This coordination included the further refining of partial 
conjectures with the aid of the CAS, as was seen for instance in the efforts of the group that had 
developed the 

! 

x
n

+1 factorization rule, and which they applied to the proof of 

! 

x
n

"1 = (x
n / 2

+1)(x
n / 2
"1)  for even values of 

! 

n .  
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The need to make sense of the CAS outputs, and the ability to coordinate these with existing 
theoretical notions and paper-and-pencil techniques, was fundamental to the students’ 
theoretical and paper-and-pencil-technical progress. Evidence that this progress did indeed 
occur in an ongoing way throughout the unfolding of the activity set has, we believe, been 
sufficiently provided. However, the students did not manage all of this on their own, even with 
the aid of the CAS. The teacher was essential to the process. He encouraged students to grapple 
with the complicated notions of the tasks and gave them adequate time in which to carry out 
their own explorations. The students clearly experienced difficulties at times, but they were not 
abandoned in these situations. At regular intervals, the teacher stimulated classroom discussion 
of the important mathematical ideas that were at stake. He supported students in presenting 
their work and in justifying their thinking. Without the teacher orchestrating the theoretical and 
technical development of the task situation, and asking key questions at the right moment, the 
advances made by the students would likely have been less dramatic. While the study did not 
intend to focus explicitly on the teacher, his role throughout was of the utmost importance.  

5. Concluding discussion 
 
In this concluding section we come back to the initial research question and summarize our 
findings on this issue. These findings concern both themes and will be related to the theoretical 
framework, which is the instrumental approach to tool use, and in particular the anthropological 
view that was summarized by the three T’s: Task-Technique-Theory (TTT). We also briefly 
discuss the findings pertaining to CAS techniques and paper-and-pencil techniques, as well as 
issues of language and discourse, and relate these two aspects to the TTT framework. 

5.1 The co-emergence of technique and theory 
 
The research question we phrased earlier in this article is: 
 

In which ways does the interaction between technique and theory foster students’ 
algebraic thinking when working in a combined CAS/paper-and-pencil environment? 

 
Of course, this is in a sense not a neutral question; it implicitly refers to the TTT framework. 
Indeed, the notions of task, technique and theory, which are closely intertwined in learning, 
guided the study in its different phases. In the preliminary design phase of the study, we 
identified possible ways in which the tasks would invite both technical and theoretical 
development, which was helpful for structuring the design process. During the teaching 
experiments, these TTT relations framed our data collection, particularly for the mini-
interviews in the 2005 experiment. In the retrospective phase, the framework guided the data 
analysis towards the identification of students’ going back-and-forth between theoretical 
thinking and developing techniques, both with the CAS and with paper and pencil, an 
intertwined process that characterizes instrumental genesis. 
  
The main finding of the study is that we clearly found evidence for the relation theory – 
technique within the setting of the designed tasks, which confirms the importance and 
productiveness of the TTT approach. Technique and theory emerge in mutual interaction. The 
observations in both themes show how techniques gave rise to theoretical thinking, and, the 
other way around, how theoretical reflections led students to develop and use techniques. This 
interaction proved to be very productive in cases of confrontation, or even that of conflict, 
between the techniques – particularly the CAS techniques – and the students’ theoretical 
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thinking. A tendency to reconcile CAS work and theory was observed; students seemed to 
strive for consistency, and used the CAS on several occasions as a means of checking their 
theoretical thinking. A second aspect of reconciliation concerns CAS techniques and paper-
and-pencil techniques, an issue that will be addressed below.  
 
Even if our findings in both themes underpin the importance of the co-emergence and 
intertwining of theory and technique in a task setting, the two themes also illustrate that the 
actual relation between task, technique and theory depends on the situation. In the approach and 
task design of theme 1, CAS techniques played an important role. In fact, the CAS peculiarities 
such as the ‘equality test’ for equivalence, automatic simplification, and neglect of restrictions 
were the technical issues that most provoked theoretical reflection. In theme 2, however, paper-
and-pencil techniques were important, too, and it was probably the coordination and the 
reconciliation of paper and pencil with CAS that evoked theoretical progress. The last part of 
theme 2 on proving clearly shows this interplay between the two media and the impact of the 
students’ prior theoretical reflections. The fact that, in spite of the differences between the two 
themes, they both provided support for the relevance of the TTT approach suggests a wide 
applicability of this theoretical framework.  
 
In spite of this, we encountered some phenomena in our teaching experiments that turned out to 
be difficult to coordinate with the current TTT framework, and which suggest elaboration or 
further adaptation. The two issues we will address now are the relation between CAS 
techniques and paper-and-pencil techniques, and the issue of language and discourse.  

5.2 CAS techniques and paper-and-pencil techniques 
 
Earlier we quoted Lagrange (2003, p. 271) as saying that, “Technique plays an epistemic role 
by contributing to an understanding of the objects that it handles, particularly during its 
elaboration.” This potential epistemic role of technique was at the core of our desire to better 
understand the interaction between the technical and the theoretical in students’ developing 
algebraic thinking. However, CAS environments combine two types of techniques: paper-and-
pencil techniques and CAS techniques. Artigue (2002) has emphasized that, while it is certainly 
easy to recognize the pragmatic value of CAS techniques, it may be less easy to grasp their 
epistemic value. She has suggested that the epistemic value of CAS techniques can be found, 
for example, in the greater diversity of representations of mathematical objects than is usual in 
classroom work with paper and pencil. We too found this to be the case in the set of task 
situations involving equivalence and equality, where the CAS techniques for determining 
equivalence of expressions were somewhat different from those involving paper and pencil. 
The variety of representations produced by the CAS provoked students to reflect in ways that 
would have been considerably more difficult to achieve with paper and pencil only. However, 
we did not find this to be the case in the set of tasks involving factoring. In fact, the epistemic 
value of the CAS techniques was to be found less in themselves and more in the way in which 
the output from the CAS techniques elicited a need for the epistemic value that could be 
derived from other techniques, namely paper-and-pencil. 
 
The set of tasks involving factoring could be said to be quite different from the set of tasks 
involving equivalence, equality, and equation. These factoring tasks involved an area of algebra 
that is typically considered primarily manipulative. The CAS techniques used in the tasks were 
quite simple in that they included just two commands: Factor and Expand. However, the fact 
that the output of the Factor command was quite often a form that was unexpected evoked in 
students the action of trying to produce the same form with their pencil-and-paper techniques. 
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Even when they could reconcile by other means, including CAS – such as multiplying some of 
the factors from the CAS factorization to obtain the form of their incomplete paper-and-pencil 
factorization – this was found not to be satisfying to them. More than half the students in the 
class we followed in theme 2 wanted to be able to produce themselves the factored form that 
was output by the CAS. If the CAS factored form could not be explained by students’ existing 
knowledge of factoring, they wanted to learn more in this regard. This is but one example of 
the way in which CAS and paper-and-pencil techniques were found to be interrelated 
epistemically, that is, co-constitutive of students’ theoretical development. 
 
Thus, our research findings lead us to suggest that the epistemic value of CAS techniques by 
themselves may depend both on the nature of the task and on the limits of students’ existing 
learning. When students cannot explain, in terms of their current theoretical and technical 
knowledge, that which a CAS technique produces, reliance on additional CAS techniques may 
not suffice. In such cases, the epistemic value of paper-and-pencil techniques would seem to 
play a complementary, but essential, role. Recent research that has used the TTT theoretical 
framework for analyzing the learning of mathematics in technological environments has tended 
to pay less attention to the role of paper-and-pencil in interaction with CAS techniques in 
promoting theoretical growth. Our results point to this as a fruitful area for research involving, 
in particular, young high school algebra learners.   

5.3 Language and discourse: A matter for further research 
 
Several examples were presented that illustrate the difficulties that the students experienced 
with both:  i) interpreting the language used in the task questions that dealt with reflection 
issues, and in responding to them, and ii) finding suitable language with which to talk about 
algebraic objects and processes, as well as their own algebraic thinking, within the classroom 
discussions. It will be recalled that, while the development of a theoretical discourse is one of 
the four main components of Chevallard’s anthropological theory, which he refers to as 
technology, this component has been folded into the theoretical component of the task-
technique-theory framework by Artigue, Lagrange, and others of the various French teams 
working in this area because of the ambiguity of the word technology in this context. In view of 
Artigue’s (2002) position that, “building a theoretical discourse relevant to some given 
instrumented techniques and well adapted to the students’ cognitive state is not a trivial task” 
(p. 262), it seems somewhat surprising that the discursive component has not been given more 
attention by these latter researchers. Perhaps, a first step would be to reconsider the decision to 
collapse the two – technology and theory – and to emphasize the discursive component in the 
same ways as they have done so for task, technique, and theory. 
 
As the TTT framework is derived from the anthropological didactical theory of Chevallard and 
is thus situated within the ensemble of human activity and social institutions, this framework 
cannot sidestep the issues associated with language and discourse. While mathematics 
education researchers (e.g., Noss and Hoyles, 1996; Lerman, 1998; Bartolini Bussi and 
Mariotti, 1999) have over the past decade or so focused on the role of language and other 
mediational tools in the teaching and learning of mathematics, Radford’s (2000) emphasis on 
the fact that language in use evolves theoretically throughout mathematical activity and comes 
to have different meanings over time seems especially pertinent here. It will be recalled that the 
students of our study struggled with sorting out the meaning of words such as common form, 
solution, equivalent, equal, expression, equation, and so on. Their initial meanings for these 
terms both shaped their interpretations of the task situations and were shaped by them. 
Meanings evolved as students grappled with reflection questions and attempted to 
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communicate their thinking to classmates and teacher. However, as researchers, we found that 
the task-technique-theory framework seemed to provide little in the way of tools for analyzing 
the role of language and discourse in our study. We point to the role played by language and 
discourse in interaction with technique and theory as an area for further research and theoretical 
development.  
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