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This research report focuses on the teaching practice of a 10th grade teacher, who 
participated in a research project involving the use of CAS technology and algebra 
tasks that were novel to this teacher. The classroom lesson that is analyzed centered 
on a proving problem embedded within a factoring task that had been engaged in the 
day prior. A two-fold analysis is presented, the first one focusing on the proving 
activity, the second one drawing on and connecting the classroom observations with 
the content of a follow-up interview with the teacher. His reflections during the 
interview highlight both the new awarenesses that emerged for this teacher during 
his teaching, as well as the factors that enabled these new awarenesses.  
 
In their review of the emerging field of research in mathematics teacher education, 
Adler, Ball, Krainer, Lin, and Novotna (2005) have argued that we need to better 
understand how teachers learn, from what opportunities, and under what conditions. 
The findings that we recount in this research report provide a compelling case for the 
particular opportunities and conditions under which the knowledge and teaching 
practice of one particular teacher of mathematics evolved. 
THE CONTEXT OF THE PRESENT STUDY 
When our research group developed the project underlying the present study, we 
decided that the use of new technologies (i.e., Computer Algebra Systems – CAS) for 
the teaching of algebra would be one of its principal components. Another was the 
design of novel tasks that would both take advantage of the technology to further the 
growth of algebraic reasoning and also focus on the interplay between algebraic 
theory and technique. The theoretical framework that underpinned the research 
project, one that we refer to as the Task-Technique-Theory frame (see Kieran & 
Drijvers, 2006, for details), draws upon Artigue’s (2002) and Lagrange’s (2002) 
adaptation of Chevallard’s (1999) anthropological theory of didactics. 
The project also involved collaboration with local teachers. The teachers were our 
practitioner-experts who, within an initial workshop setting, provided us with 
feedback regarding the nature of the tasks that we were conceptualizing. After 
modifying the tasks in the light of the teachers’ feedback, we requested that, at the 
beginning of the following semester, they integrate the entire set of tasks into their 
regular mathematics teaching and that they be willing to have us act as observers in 
their classrooms. Throughout the course of our classroom observations, which 
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occurred over a five-month period in each class, we also offered ongoing support to 
the participating teachers. In addition, we conducted interviews with some of them 
immediately after observing certain lessons that we had thought might be considered 
pivotal moments in their practice. The following narrative concerns one such pivotal 
lesson, taught by the teacher Michael.  
MICHAEL’S STORY 
Some Background 
At the time of the present study, we had already observed 15 of Michael’s classes – 
classes where he had integrated the CAS-supported tasks that had been created for 
the research project. Michael was a young teacher whose undergraduate degree and 
teacher training had been carried out in the U.K. He had been teaching mathematics 
for five years, but had not had a great deal of experience with using technology in his 
teaching, except for the graphing calculator. He was a teacher who, along with 
encouraging his pupils to talk about their mathematics in class, thought that it was 
important for them to struggle a little. He liked to take the time needed to elicit 
students’ thinking, rather than quickly give them the answers.   
Our observations of Michael’s class had started at the very beginning of the Grade 10 
school year. The students in his class had already learned the basic techniques for 
factoring a difference of squares and certain trinomials, and had solved linear and 
quadratic equations. While they had used graphing calculators on a regular basis in 
the past, it was only at the start of our project that they became familiar with symbol-
manipulating calculators (the TI-92 Plus calculator). They had never before done any 
proving, either in geometry or in algebra. This report concerns the lessons that 
involved the ‘xn – 1 task’, the last component of which was a proof problem. We 
observed, and videotaped, these lessons. The day after the close of the proving 
activity, the first author interviewed Michael.  
The xn - 1 Task 
The design for this task was an elaboration of earlier work carried out by Mounier 
and Aldon (1996) with slightly older students. The first part of our task activity, 
which included CAS as well as paper and pencil, aimed at promoting an awareness of 
the factor 
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part involved students’ confronting the paper-and-pencil factorizations that they had 
produced for xn !1  (first with integer values of n from 2 to 6, and then from 7 to 13), 
with the completely factored forms produced by the CAS, and in reconciling these 
two factorizations (see Figure 1). An important aspect of this part of the activity 
involved reflecting and forming conjectures (see Figure 2) on the relations between 
particular expressions of the xn !1family and their completely factored forms. The 
final part of the activity (see Figure 3) focused on students’ proving one of these 
conjectures. This proving activity is the central feature of our analysis.    
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In this activity each line of the table below must be filled in completely (all three 
cells), one row at a time. Start from the top row (the cells of the three columns) and 
work your way down. If, for a given row, the results in the left and middle columns 
differ, reconcile the two by using algebraic manipulations in the right hand column.  
Factorization using 
paper and pencil 

Result produced by the 
FACTOR command 

Calculation to reconcile the two, if 
necessary 

=!1
2
x    

=!1
3
x    

=!1
4
x    

=!1
5
x    

=!1
6
x    

        Figure 1. Task in which students confront the completely factored forms produced by the CAS 
 

Conjecture, in general, for what numbers n will the factorization of xn − 1: 
i) contain exactly two factors? 
ii) contain more than two factors? 
iii) include 

! 

x + 1( )  as a factor? 
Please explain. 

 Figure 2. Task in which students examine the nature of the factors produced by the CAS 

 

Prove that (

! 

x +1) is always a factor of xn !1  for even values of n. 
Figure 3. The proving task 
 

Our Classroom Observations of the Proving Component of the Task 
After students had completed the first two parts of the xn-1 activity, they were faced 
with the proving segment of the task. They worked mostly within small groups, for 
about 15 minutes. Some were using their CAS calculators. Getting students into this 
proving task was not straightforward for the teacher, as they had never before 
engaged in such activity. However, with Michael’s encouragement, students did 
make progress. When he sensed that the majority of them had arrived at some form of 
a proof, he initiated whole-class discussion, with various students sharing their work.  
Proof 1: A general approach based on the difference of squares. Paul was the first 
to be invited to come to the front of the class and to present his ‘proof’: 
Paul: Ok. So, my theory is that whenever xn-1 has an even value for n, if it’s greater or equal 

to 2, that one of the factors of that would be x2-1, and since x2-1 is always a factor of 
one of those, a factor of x2-1 is (x+1), so then (x+1) is always a factor. 

The teacher then asked: “Is everyone willing to accept his explanation?”  
Dan subsequently came forward with what he considered a counterexample, 
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refactored as 
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"1) . He then factored 
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+1) – a sum of cubes – which yielded 
the sought-for (x+1) factor. He argued that the presence of 

! 

x
2

"1 was not a necessary 
component of the proof because he (Dan) had shown that, for some even values of n, 
the factoring of xn-1 does not have to end up with a difference of squares. A sum of 
cubes could result, and it too would yield (x+1). This led immediately to many 
students’ voicing disagreement. Many of the other students, including Paul, 
contended that Dan’s was not a counterexample, after all. They argued that 

! 
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could, in fact, produce x2-1 if it were factored differently: 
Paul: Isn’t x6+1 a sum of cubes? … So couldn’t you also do the x6-1 as the difference of 

cubes [one student says “yeah”] and that’s x2-1. 

Commentary on Proof 1. While Paul had seen that x6-1 could be viewed as a 
difference of cubes, and thus that x2-1 was a factor, he did not seem able to link this 
particular example with his general affirmation that for all even ns in xn-1, one would 
always arrive at x2-1 as a factor. Yet, he was quite close. Could he see that x6-1 was 
equivalent to ((x2)3 – 1), even if he had never expressed it in quite this way? This 
might then have been generalized to expressing xn-1 for even ns as ((x2)p-1) where n = 
2p. And so because xn-1 has (x-1) as its first factor, similarly ((x2)p-1) has x2-1 as its 
first factor, and thus (x+1) as a factor.  
Proof 2: A proof involving factoring by grouping. The second approach to the 
proving problem was offered by Janet. Janet’s proof, which she and her partner 
Alexandra had together generated, was based on their earlier work on reconciling 
CAS factors with their paper-and-pencil factoring (for the task shown in Figure 1). 
They had noticed that for even 

! 

ns, the number of terms in the second factor of xn-1 
(when factored according to the general rule) was always even. Janet argued, as she 
presented the proof, using 

! 

x
8

"1 as an example, that it would work for any even n: 
Janet: When n is an even number 
Teacher: Write it on the board, show it on the board. 
Janet: [she writes “x8-1” and below it: (x-1)(x7+x6+x5+x4+x3+x2+x+1)] 
Teacher (to the class): Ok, listen ‘cause this is interesting, it’s a completely different way of 

looking at it, to what most of you guys did. Ok, so explain it, Janet. 
Janet: When n is an even number [she points to the 8 in the x8-1 that she has written], the 

number of terms in this bracket is even, which means they can be grouped and a factor 
is always (x+1).  

Teacher: Can you show that? 
Janet: [she groups the second factor as follows, (x6(x+1)+x4(x+1)+x2(x+1)+1(x+1))] 

Commentary on Proof 2. Janet’s proof, which was generic in that it embodied the 
structure of a more general argument and was a representative of all similar objects 
(Balacheff, 1988; Bergqvist, 2005), was one that seemed to be understood and 
appreciated by most of the students in the class (see Weber, 2008, in this regard). 
Janet had been able to explain how the terms of the second factor (the factor 
beginning with the x7 term) could be grouped pair-wise, yielding a common factor of 
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(x +1). Her proof appealed to her classmates’ common experience in factoring by 
grouping and led to insights that had not occurred to them before. 
Mariotti (2002, 2006) has argued that there is no proof without theory. Similarly, 
Mariotti and Balacheff (2008) have emphasized that the proving process necessarily 
starts with the production of conjectures before moving on to proof. In this regard, it 
is noted that the two-lesson sequence that was devoted to the xn-1 task involved an 
interplay between theory and technique, with the development of student conjectures 
throughout. The ideas that the students generated during the proving task were those 
about which they had been conjecturing through the entire factoring activity.    
The Subsequent Interview with the Teacher, Michael 
A 35-minute interview with Michael took place at the close of the proving activity. It 
inquired into a range of issues, including his views on the research project, as well as 
his impressions of the most recent activity involving the xn-1 task.  
Low expectations at the start of the project – Extract 1. 
Interviewer: Do you now see this technology as playing a different role in your class from 

the time before the project started? 
Michael: Yes. Before it started, I hoped it would be good, but my expectations were not that 

high about it. I certainly have been very pleasantly surprised with what’s happened.  
The role played by the tasks and the technology – Extract 2. 
Interviewer: How would you describe the impact on the students of this project both 

mathematically and technologically? 
Michael: I think the biggest impact, and the thing I’ve been most happy with, is the way you 

guys have designed the activities. It’s the way that we’ve challenged their [the students’] 
thinking and actually made them think about a process that maybe they knew how to do, 
but made them think about why they’re doing it that way. And I think that’s what the 
calculator has helped them to do and helped them to really, really look at whether they 
understand the material. … That’s something we don’t do enough of in mathematics; I 
think we should do and I really like to do it. … The learning through the technology was 
amazing. But, the technology is nothing by itself. The amount of work that you put into 
these activities; that’s why they were so successful. …  And it’s been really good to see 
how the kids have developed these [the tasks] and worked with them.   

Change in his teaching – Extract 3. 
Interviewer: Has this project affected your style of teaching in any way? 
Michael: I think it’s made me think more, or made me realize that what I like is making 

them think a little bit more. And I think I did that anyway, …  but it just made me, just 
consider a little bit more: Can I let them come through this themselves, let them try this 
out themselves a little bit more, which I think I always did – but just seeing these 
activities work, it’s made me realize there’s more scope to it than I have done in previous 
years. There is much more scope to let them really go and really know the material 
properly. 

Pushing students to go farther mathematically – Extract 4. 
Interviewer: Has the project altered your view of the nature of the mathematics content that 

can be taught at this level? 
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Michael: Yes. Because some of the things that you had in those activities I wouldn’t have 
touched. Such as, especially the last activity [the xn-1 task], you know there’s no way I 
would have gone anywhere with that. It was way beyond anything that they need to 
know, but just doing that activity was such a fulfilling experience for, not just for me, I 
spoke with some of the kids afterwards, and they really enjoyed it. They really did! Just 
going way beyond what they needed to do [in the program] and they were all able to do 
it. The really nice thing about that activity is that, at the end of it, everyone had 
something. Even if they didn’t all have as nice a little proof as Janet and Alexandra, all of 
them had worked someway along the lines to get to something. So, so yeah, it certainly 
opens up things and they couldn’t have done that without the technology. So, so for sure 
is the answer to your question. 

Increasing student involvement and promoting learning – Extract 5. 
Michael: With this technology, learning goes much further, it is much more involved. … It 

gives them the extra level of ability, and it involves more students. It gets them into it a 
lot more. … they could discover things themselves. That is a valuable effect. 

Michael had not had high expectations at the outset of the project. This makes the 
results all that much more interesting. Clearly, one of his strongest impressions of the 
project was the way in which the tasks and the technology pushed the students to go 
much farther in their mathematical thinking – so much so that he wanted to continue 
using the tasks and technology the following year. He also wanted to share the lesson 
videos of the xn-1 task with colleagues, just so that they could see what is possible.  
ANALYSIS AND DISCUSSION 
As stated by Michael, it was his participation in the research project, a project 
involving technologies and tasks that were novel to him, that led to new awarenesses. 
These new awarenesses constituted change in his knowledge of mathematics and his 
knowledge of mathematics teaching and learning, both of which were reflected in his 
practice of teaching algebra. Mason (1998) has pointed out that it is one’s developing 
awareness in actual teaching practice that constitutes change in one’s ‘knowledge’ of 
mathematics teaching and learning. While Michael did participate in our professional 
development workshop prior to his integrating the novel tasks and technology into his 
teaching, it was his actual practice with these materials that had the greater impact 
regarding his ‘developing awarenesses’ regarding mathematics teaching and learning. 
As we gleaned from the interview, Michael developed at least three new awarenesses:  
* An awareness of what students at this grade level can accomplish mathematically – 
given appropriate tasks (the task aspect was considered very important) – as well as 
the realization that they can go further mathematically than expected (Extracts 3, 4). 
* An awareness of the role that technology can play in the mathematical learning of 
students (Extracts 1, 2, 4, 5).  
* An awareness regarding the culture of the class: it changes when technology is 
present – students become more involved; they are more autonomous (Extract 5). 
 
Several factors were found to enable the emergence of these awarenesses: a) access to 
the resources and support offered by the research group; b) use of technologies and 
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tasks whose mathematical content differed from that usually touched upon in class; c) 
the quality of the reflections of his own students on these tasks; d) his disposition 
toward student reflection and student learning of mathematics; e) his attitude with 
respect to his own learning. The first two factors relate principally to the role played 
by resources ‘from without’, while the remaining three could be said to be ‘from 
within’ in that they concern the given teacher and his students. However, it was in the 
interaction of the two dimensions that teacher awareness and change were promoted.  
Had it not been for the ‘from-without’ factors, that is, the access to the resources and 
support offered by the research group and, consequently, the use of technologies and 
tasks whose mathematical content differed from that usually touched upon in class, 
then the ‘from-within’ factors, such as, the quality of the reflections of his own 
students on these tasks, would not have been put into play. Similarly, had it not been 
for ‘from-within’ factors, such as Michael’s disposition toward student reflection and 
student learning of mathematics, as well as his attitude with respect to his own 
learning, then the ‘from-without’ factors related to the research team’s contributions 
would not have taken root and flowered. Both types of factors supported each other 
in a mutually intertwining manner. 
This is of interest from a theoretical perspective. It suggests firstly that the integration 
of novel materials and resources that have been designed to spur mathematical 
learning is more likely to be successful when the teachers who are doing the 
integrating see clearly that these resources are having a positive effect on their 
students’ learning. Secondly, the novel materials and resources have a greater 
likelihood of producing this positive effect on student learning when the teacher 
doing the integrating engages in teaching practices that encourage student reflection 
and mathematical reasoning. The synergy between the two types of factors was found 
to be a major force in the development of Michael’s professional awareness, and one 
that constituted change not only in his knowledge of mathematics and mathematics 
teaching/learning, but also in his practice.  
In conclusion, we wish to emphasize one issue. Much of the research related to 
teachers’ learning from their own practice emphasizes teachers’ planning of their 
interactions with students, followed by their subsequent reflective analysis of these 
interactions. Considerably fewer studies (exceptions include, e.g., Leikin, 2006) 
follow the path that we did where the majority of the planning of the instructional 
interaction with respect to the mathematical content and the task questions to be 
posed to the students is elaborated in advance by the research team in partial 
collaboration with the participating teachers. This, we feel, added a dimension to the 
study that does not often come into play in research on teaching practice. The 
positive nature of the reflections shared by Michael during the post-lesson interview 
suggests that the integration of resources coming from without can be a powerful 
stimulus to teachers’ learning from their own practice. 
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