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Abstract: Little is known about the ways in which teachers take on research-based resources and 

adapt them to their own needs. Teachers’ adaptation of researcher-designed resources is a new 

area of research, but one that fits into the emerging documentational approach of didactics. This 

study focused on the manner in which three teachers who were participating in a research project 

on the learning of algebra with CAS technology spontaneously adapted the resources that were 

designed specifically by the researchers for use in the project. Analysis of the classroom-based 

observations of teaching practice showed that adaptive shaping occurred with respect to all three 

key features (the mathematics, the students, and the technology) of our researcher-designed 

resources, whether our intentions with respect to those features were explicitly stated or implicitly 

suggested. The study also found that embarking with the same set of task-sequences, and 

sharing the same goal of participating in a research project aimed at developing the technical and 

theoretical knowledge of algebra students within a CAS-supported environment, can lead to quite 

different uses of the resources. The teachers brought into the study their own beliefs, knowledge, 

and customary ways of interacting with their students. Quite clearly this had an impact for each 

class on the nature of the mathematical activity engaged in. 
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Chap. 10 – Researcher-designed resources and their adaptation within classroom teaching 
practice: Shaping both the implicit and the explicit 
 
10.1    introduction 

Mathematics education research has, over the years, yielded numerous resources, many of 

which have been both designed with the practitioner in mind and made accessible to them. But 

little is known about the ways in which teachers take on such research-based resources and 

adapt them to their own needs. In 2000, Adler proposed that, “mathematics teacher education 

needs to focus more attention on resources, on what they are and how they work as an extension 

of the teacher in school mathematics practice” (Adler, 2000, p. 205). However, much of the 

resource-related research has focused more on the mathematical design of the resources (e.g., 

Ainley & Pratt, 2005) or on their impact with respect to student learning (e.g., Hershkowitz et al., 

2002), rather than on the ways in which the resources are used by teachers and on why they are 

used in these ways. The research presented in this chapter centres on the ‘how’ and the ‘why’ of 

teachers’ adapting of researcher-designed resources. 

10.1.1    The literature that this research draws upon 

The ways in which teachers adapt researcher-designed resources – with the emphasis here on 

the fact that the resources are researcher-designed rather than, for example, commercially-based 

– is a new area of research, but one that fits into the recently emerging frame that is being 

referred to as the documentational approach of didactics (Gueudet & Trouche, 2009). Gueudet 

and Trouche (Chapter 2) state that the documentational approach focuses on both the 

interactions between mathematics teachers and resources and the ways in which these 

interactions are constituent of professional growth. They use the term resources to include a 

variety of artefacts: textbook, piece of software, student sheet, discussion with a colleague or with 

students. While the long-term evolutionary process of teachers’ choosing, transforming, 

implementing, and revising of resources is considered central for Gueudet and Trouche, they do 

admit that “whatever the time scale, the integration and appropriation of new resources is a 

complex issue” (Gueudet & Trouche, 2009, p. 212). 

Some of the past research on teaching, even if it has been built upon different theoretical frames 

and structures, deals with teachers’ day-to-day practice and their shaping of curricular resources, 
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and is thus pertinent to the research to be described in this chapter. A rich research base exists 

with respect to what teachers do in their day-to-day practice (and why), focusing on, for example, 

the roles played by teachers’ knowledge base (e.g., Borko & Putnam, 1996; Fennema & Franke, 

1992; Shulman, 1986) and their beliefs (Thompson, 1992). More recently, Robert and Rogalski 

(2005) have argued that the factors underlying teaching practice include each teacher’s personal 

history, experience and professional history in a given activity, and knowledge and beliefs about 

mathematics and teaching. Sensevy et al. (2005) have noted that the didactic techniques they 

observed within each of the teacher’s teaching of the same content were “produced on a 

background of beliefs” (p. 174) that gave rise to a certain consistency in the practice of each 

teacher. Such consistency constitutes that which is sometimes referred to in the literature as 

teaching style (e.g., Evans, Harkins, & Young, 2008).  

In that the researcher-designed resources central to this chapter involve the use of technological 

tools and novel tasks, the existing literature related to how teachers adapt newer reform-based 

curricular material, as well as the studies on teachers’ practice involving digital resources and 

related task materials, is of interest. Research suggests that different teachers enact the same 

curriculum materials differently (e.g., Chavez, 2003) and, moreover, that the same teacher enacts 

the same curriculum materials differently in different classes (Eisenmann & Even, in press). 

Remillard (2005) carried out a review of the research literature on teachers’ use of mathematical 

curricula, in particular, research pertaining to reform-based curricula. She found that, although 

such studies offer insights into the influences underlying curriculum use, they provide little clarity 

on how teachers interact with curricular resources (note that Remillard’s Chapter 6 in this volume 

focuses specifically on this gap in the literature). In addition, research studies have been carried 

out with the goal of developing design principles for the creation of curriculum materials that are 

supportive of teacher learning in various curricular areas (e.g., Davis & Krajcik, 2005; Ruthven et 

al., 2010); however, the aim of this chapter is to focus more directly on what teachers actually do 

when attempting to integrate novel, researcher-designed, materials into their classroom practice. 

Schoenfeld (1998) has developed a theoretical model of how and why teachers do what they do 

while engaged in the act of teaching. The model describes the ways in which teachers’ goals, 



 5 

 

beliefs, and knowledge interact, and accounts for teachers’ moment-to-moment decision-making 

and actions. While Schoenfeld’s model does not treat teachers’ practice with novel materials, one 

of the cases that he discusses in detail is that of a relatively new teacher whose experience with 

the given curricular material was limited. This allows us to infer that, according to Schoenfeld, the 

practice of teachers with novel material, whether it be the activity of the lesson planned by the 

teacher, or the unscripted activity engendered by unexpected students’ difficulties or responses, 

is regulated by deep-seated goals, beliefs, and knowledge.  

In contrast to attributing teaching practice to goals, beliefs, and knowledge, some of the recent 

research involving the integration of computer-technology resources situates such practice within 

Saxe’s (1991) frame of emergent goals. Within this frame, Lagrange and Monaghan (2010) argue 

that models that focus on teachers’ established routines (as described, e.g., by Robert & 

Rogalski, 2005) are insufficient for analyzing teachers’ activities in technology-based lessons. For 

Lagrange and Monaghan, a central question is why it is difficult, even for experienced teachers, 

to develop consistent activity when using technology. They posit that teachers’ practices in 

dealing with the complexity of classroom use of technology are far from stable. Drijvers et al. 

(2010), who have combined the constructs of emergent goals (Saxe, 1991) and instrumental 

orchestration (Trouche, 2004; see also Drijvers, Chapter 14), suggest that the unstable practices 

of teachers within technology environments might still be rooted within a system of more stable 

beliefs and knowledge.  

Remillard (2005) points out that, within the studies on teacher characteristics that influence 

curriculum use, knowledge and beliefs are the most studied. However, she also argues that 

features of the curriculum matter to curriculum use as much as characteristics of the teacher and 

that such research is rather unexplored terrain: “While it is common for studies of teachers’ 

curriculum use to delve deeply into individual teachers’ resources and characteristics, it is less 

common for researchers to examine use through the analyses of the structures and features of 

the curriculum” (p. 235). She signals a need for more research in this area, focusing in particular 

on the participatory relation between teacher and curriculum. In the spirit of Remillard’s 

recommendation, this chapter uses the main features of the resources designed by the research 
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team as a backdrop for analyzing both the adaptations brought to the researcher-designed 

resources by participating teachers within their teaching practice, as well as the relation of these 

adaptations to individual teacher characteristics.  

10.2    Background 

The study presented herein is part of a larger program of research, the first phase of which was 

oriented toward student learning: its central objective was to shed light on the co-emergence of 

algebraic technique and theory within an environment involving novel tasks and a combination of 

Computer Algebra System (CAS) and paper-and-pencil technologies (see Kieran & Drijvers, 

2006). The second phase of the program, which was oriented toward teaching practice, included 

secondary analyses of the video-data from the first phase. From the start, these analyses 

disclosed specific differences in the manner in which teachers were interpreting the researcher-

designed tasks in their day-to-day practice. Individual teachers were mediating the technical and 

theoretical demands of the tasks for their students in quite different ways. These secondary 

analyses provide the foundation for this chapter.  

10.2.1    The three teachers and their students 

Of the five teachers participating in our initial study, the three who are featured in this chapter 

were selected because they all taught in the same city – a large urban metropolis – and thus 

shared a certain common curricular experience. They shall be named T1, T2, and T3. To help in 

further maintaining their anonymity, the masculine gender will be used throughout. 

T1, whose undergraduate degree was in economics, had been teaching mathematics for five 

years, but had not had a great deal of experience with technology use in mathematics teaching, 

except for the graphing calculator. In observing T1’s teaching prior to the start of the research, the 

researchers noted that he encouraged his pupils to talk about their mathematics. T1’s class of 

Grade 10 students was considered by the teacher to be of medium-high mathematical ability. 

They were quite skilled in algebraic manipulation, as was borne out by the results of a pretest we 

administered. They were used to handling graphing-calculator technology on a regular basis, but 

had not experienced CAS technology prior to the start of the research.  
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T2, who was the most mathematically qualified of the three teachers, had previously taught 

college-level mathematics before teaching at the secondary school. He had taught mathematics 

for 16 years, half of this time at the college level. T2 was a leader with respect to the 

advancement of the use of technology in the school where he was teaching. In our pre-study 

observations of his teaching practice, we noted that his teaching style tended to be teacher-

centred. T2’s students seemed very strong, mathematically-speaking, based on the same pretest 

as was mentioned above, and were experienced with the various capabilities of graphing-

calculator technology, but not with CAS. 

T3, whose undergraduate degree was in the teaching of high school mathematics, had five years 

of experience in the teaching of mathematics at the secondary level. While he had some prior 

experience with the use of graphing-calculator technology in his teaching, he had never before 

used CAS. T3’s students were considered by their teacher to be of average mathematical ability. 

They had some graphing-calculator experience, but none with CAS. The pretest that we 

administered indicated that they were weaker in symbol-manipulation ability than the students of 

the other two classes. 

10.2.2    Methodological aspects 

At the same time that our research team began to create the task-sequences that would 

encourage both technical and theoretical development (see also Chevallard, 1999, Artigue, 2002, 

and Lagrange, 2003, for more on task, technique, and theory) in 10th grade algebra students – a 

creation process that took well over a year – we also made contact with several practicing 

mathematics teachers to see if they might be interested in collaborating with us. The form of 

collaboration that we arranged was on several levels. First, the teachers were our practitioner-

experts who, within a workshop setting, provided us with feedback regarding the nature of the 

tasks that we were conceptualizing. They also spent some time learning how to use the CAS 

technology (hand-held TI-92 Plus calculators – the same devices that would be lent to the 

students for the entire school year). As well, the week-long workshop included discussions related 

to the main mathematics-related and technology-related intentions of the researcher-designers. 

Second, after modifying the task-sequences in the light of the teachers’ feedback, we requested 
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that, at the beginning of the following semester, they integrate all of the task-sequences into their 

regular mathematics teaching and that they be willing to have us act as observers in their 

classrooms. Third, throughout the course of our classroom observations, which occurred over a 

five-month period in each class, we also offered a form of ongoing support to the participating 

teachers by being available to discuss with them whatever concerns they might have. In addition, 

we conducted interviews with some of them immediately after certain lessons that we had 

perceived to be worthy of further conversation. 

In contrast to the methodological approach adopted by Gueudet and Trouche (Chapter 2), which 

includes consideration of teachers’ work outside of class, their existing materials, and how their 

use of these various resources interacts and changes over time, our main aim was more 

restrained. Our interest was in observing how teachers integrated the designed task-sequences 

into their usual teaching practice, which additional resources they might call upon (e.g., the 

blackboard and the classroom view-screen – a device connected to an overhead projector that 

projects the screen display of the calculator that is hooked up to it), and in which ways they might 

adapt the task-sequence materials. In addition to the videotaped observations of each classroom 

lesson involving our task-sequences, and the follow-up conversations with each teacher, we also 

observed a couple of lessons of each teacher’s regular teaching practice prior to the start of the 

research. In sum, the five-month period that we spent in each teacher’s class during the main 

project allowed us not only to gather evidence of each teacher’s observable actions with the task-

sequences, but also to develop an awareness of some of the underlying factors at play. It is noted 

that one of the teacher’s classes was observed again the following year, during those months in 

which he was using once more the researcher-designed tasks. Just as has been pointed out by 

Ruthven (2007), the design elaborated by the researcher-designers was one that continued in 

usage, but the analysis of those evolutionary changes with respect to the role of the teacher as 

designer of his own resources is not part of the present chapter. 

10.3    The researcher-designed resources  

The student version of each task-sequence consisted of a set of activity sheets that presented the 

task questions and blocked-off spaces for written answers, as well as indications as to when 
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classroom discussion could be expected to occur. The research team also created a 

teacher/researcher guide to accompany each task-sequence, in addition to a solution key (see the 

research team’s website for the task-sequences: http://www.math.uqam.ca/apte/indexA.html). 

Thus, while the student task-sequences constitute a central component of the researcher-

designed resources, the resources are also understood to include the accompanying teacher 

guides, the particular CAS tool that was used (along with its guide), and the discussions that were 

held during the workshop sessions regarding the spirit embedded within the textual materials, as 

well as any ad hoc conversations that occurred during the unfolding of the research.  

10.3.1    Three key features of the researcher-designed task-sequences   

In designing the task-sequences, our intentions revolved around three key aspects: the 

mathematics, the students, and the technology. 

Mathematics-wise, all of the task-sequences involved a dialectic between technique and theory 

within a predominantly exploratory approach, with many open-ended questions. The mathematics 

that formed the content of the tasks intersected with, but also extended, the usual fare for Grade 

10 algebra students. At times, the main mathematical theme of the task-sequence was more 

technique oriented, as in: factoring the     

! 

x
n
"1 family of polynomials for integral values of n, solving 

systems of linear equations, using factoring to solve equations containing radicals, and exploring 

the sum and difference of cubes. At other times, the focus was more theoretical in nature, as in 

the task-sequences related to the equivalence of algebraic expressions. But in both cases, a 

combination of technical and theoretical activity related to the mathematics was envisaged. In 

brief, the intended emphases related to the mathematics included: i) coordinating the technical 

and theoretical aspects of the mathematics, ii) pattern seeking, inductive reasoning, and 

development of techniques, iii) conjecture making and testing, and iv) deductive reasoning and 

proof.  

Student-wise, we built into the task-sequences not only questions where the students would be 

encouraged to reflect on their mathematics, but also indicated moments where they would be 

expected to talk about their mathematical thinking during whole-class discussions. Tasks that 

asked students to write about how they were interpreting their mathematical work and the 
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answers produced by the CAS aimed at bringing mathematical notions to the surface, making 

them objects of explicit reflection and discourse in the classroom. In sum, the intended emphases 

that related to the students included: i) encouraging them to be reflective and inquiring into their 

thinking, and ii) encouraging them to share their ideas, questions, and conjectures during 

collective discussions. 

Technology-wise, all of the task-sequences involved technical activity with either the CAS, with 

paper and pencil, or with both. We viewed the CAS as a mathematical tool that, through the task, 

stimulates reflection and generates results that are to be coordinated with paper-and-pencil work. 

The CAS served thus as a confirmation-verification tool and/or a surprise generator (producing 

results that would, in general, not be expected by the students). Very few CAS commands were 

required for the task-sequences we designed, simply Factor, Expand, Solve, and the evaluation 

command; thus, the manipulation of the technological tool itself was not to impede the 

mathematical thinking encouraged by the task-sequences. Additional technologies that we 

considered would be used included the view-screen and the blackboard. In sum, the intended 

emphases that related to the technologies included: i) taking advantage of the potential of CAS for 

producing surprising responses that would provoke a rethinking of techniques or theories, for 

verifying conjectures of a technical or theoretical nature, and for checking paper-and-pencil work; 

ii) using the blackboard for rendering public, within class discussions, both teacher explanations 

and student work.  

10.3.2    The issue of explicit versus implicit researcher-designer intentions  

The teacher guides, which also contained all of the task questions that were addressed to the 

students, included many specifics that were addressed to the teacher alone. Firstly, they offered 

explicit suggestions as to the precise mathematical content that might be addressed within the 

collective discussions. Secondly, they presented a few examples that illustrated, pedagogically-

speaking, how a particular topic might be further explained at the blackboard. The following text 

from the teacher guide for the first part of the Activity 7 task-sequence illustrates how the 

researchers made explicit the main mathematical issues for discussion, potential erroneous 
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thinking on the part of the students, and the role of the CAS for the given task questions (see 

Figure 1). 

 

For discussion: 
In the course textbook, taking out a common factor is approached without a clear motivation 
or rationale for its use. Here, the aim of taking out the common factor     

! 

y "2  is relatively easy 

to motivate, be it in the expression 
    

! 

y "2( )
3

"10 y "2( )  or the expression 

    

! 

y "2( )
3

"10 y "2( ) " y y "2( ) .  
In each case, taking out the common factor enables students to reduce the problem to one of 
solving a quadratic equation (having solutions: y = 6 and y = –1), whether it be by factoring 

out     

! 

y "2  on both sides of the equation 
    

! 

y "2( ) y "2( )
2

"10
# 

$ 
% 

& 

' 
( = y y "2( ) , or by invoking the zero-

product theorem in the equation 
    

! 

y "2( ) y "2( )
2

"10" y
# 

$ 
% 

& 

' 
( = 0 . Moreover, the aim is to orient 

students to the possible “taking out of the common factor” involving the radical expression in 
the two subsequent items.  
 
Among those students who take out the common factor     

! 

y "2  on both sides of the equation, 
some are likely to “lose” the solution y = 2. Whether or not this be the case, however, on the 
basis of this example the teacher should conduct a classroom discussion about what 
precautions to take before canceling a factor common to both sides of an equation. In effect, 
for the values of a variable for which the common factor vanishes, this simplification is 
tantamount to division by zero! Those values of the variable must therefore always be treated 
(i.e., verified as possible solutions) one by one, before simplification. It is this very 
simplification, for which the solution y = 2, given by the calculator, is lost, that we hope 
students will retain. 
 
The teacher can also help students see how to avoid this problem by using the strategy 
consisting of bringing all terms to one side of the equation: 

    

! 

y "2( )
3

"10 y "2( ) " y y "2( ) = 0 
and invoking the theorem: “a product of two factors is zero iff either one of the factors is zero.” 
 
Figure 1. Intentions of the researcher-designers that were rendered explicit within the teacher guide for Activity 7 

 

But, in general, the teacher guides did not elaborate on the student-related or technology-related 

intentions of the researcher-designers. For example, the teacher guides did not specify how to 

conduct the collective discussions – how to encourage reflection, how to inquire into student 

thinking, how to have students share their thinking with their classmates during the collective 

sessions, how to use the blackboard to help students coordinate their CAS and paper-and-pencil 

techniques, or how to orchestrate discussions of a theoretical nature.  
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The explicitness of the students’ written task-questions was intended, in a sense, to help fill in 

some of the gaps regarding that which was not communicated explicitly to teachers. The written 

questions that were directed to the students, and the frequent pointers to whole class discussions, 

were intended to convey to the teachers, albeit in an implicit way, the researcher-designers’ 

intentions regarding the mathematics, the students, and the technology. For example, task 

questions such as, “Explain why 
    

! 

x +1( )  is always a factor of     

! 

x
n
"1 for even values of n ≥ 2”, and 

“Perform the indicated operation (using paper and pencil): 
    

! 

x "1( ) x
2 + x +1( ) =  ” were quite specific 

in their stress on the use of either theoretical or technical means for approaching the 

mathematics. Similarly, questions that related to mathematical reflection, such as, “Based on your 

observations with regard to the results in the table above, what do you conjecture would happen if 

you extended the table to include other values of x?”, as well as the mention in the Activity sheets 

that collective discussions were scheduled to follow, were meant to communicate not just the 

need for student reflection, but also the intention to have students discuss their reflections during 

the collective sessions. Our technological intentions, especially those regarding the coordinating 

of paper-and-pencil and CAS techniques, were also explicitly presented in the task questions, for 

example: “Verify the anticipated result above using paper and pencil and then using the 

calculator,” and “If, for a given row, the results in the left (with paper-and-pencil) and middle (with 

CAS) columns differ, reconcile the two by using algebraic manipulations in the right-hand column.”  

Thus, the teacher guides were a blend of the implicit and the explicit. Explicit within the structure 

of the task-sequences were the mathematical aims, the issues on which students were expected 

to reflect, and the ways in which the CAS and paper-and-pencil technologies were to be used. 

Implicit was the fact that all three of these were to be combined and coordinated, as well as a 

manner for doing so, within the collective discussions. As will be seen in the upcoming section, 

teachers adapted both that which had been rendered explicit, as well as that which had been 

suggested implicitly, within the researcher-designed resources. 

Before presenting the nature of these adaptations, a few additional remarks are in order with 

respect to both the implicit and its adaptation. In all reading of text, the reader has a part to play. 
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This notion is discussed in many theoretical writings, including Otte’s (1986) complementarist 

position on the dialectic between textual structure and human activity, as well as Remillard’s 

(Chapter 6) view that, “the form of a curriculum resource includes, but goes beyond, what is 

seen.” Nevertheless, that which is unseen is not necessarily less present than that which is seen, 

as argued by Helgesson (2002, p. 34): “What is implicit, and thus unstated, is not necessarily less 

clear (or obvious) or less direct than what is explicitly stated; in other words, that an assumption is 

implicit does not mean that it is hidden and hard to find, or realized to be there only after some 

reflection.” Helgesson, who defines implicit as that which is implied, understood, or inferable – 

tacitly contained but not expressed – points out that the tone and style in which the text is written 

may also say something about what it is intended to communicate. In keeping with Helgesson, we 

consider as implicit those unwritten and unspoken aspects of the researcher-designed resources 

that can be inferred from that which was explicitly stated, those aspects that could be said to be in 

the spirit of that which was communicated directly. Also in line with Helgesson, we would argue 

that the implicit does not necessarily require any additional reflective interpretation than that which 

is called upon for the explicit. Thus, adapting that which is implicit should be akin to adapting that 

which is explicit.  

10.4   Teachers’ classroom adaptations of the researcher-designed resources  

The two task-sequences that are the focus of this chapter are Activities 6 and 7. Activity 6 was 

related to the factoring of     

! 

x
n
"1, for integral values of n (for a different elaboration of this task, see 

Mounier & Aldon, 1996, whose work provided the initial inspiration for our task-sequence). Activity 

7 dealt with the use of factoring to solve equations with radicals. These task-sequences were 

selected because the two of them taken together highlight the duality of the adaptations made by 

our teacher participants: (a) adaptations dealing with more implicit aspects of the design and with 

unspecified areas of the researcher-designed resources, and (b) adaptations related to changing 

or reorganizing an explicit aspect of the design. The extracts analyzed from Activity 6 will bear on 

adaptations made to the more implicit intentions of the researcher-designers, with examples 

drawn from the practice of T1 and T2, while Activity 7 will focus on adaptations to the explicit with 

examples from T3’s practice.  
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All teacher activity that was addressed to the entire class has been taken into account. In our 

analysis, we foreground teaching practice against the backdrop of the three overlapping, 

interrelated key features of our researcher-designed resources: the mathematics-related, the 

student-related, and the technology-related, within the secondary frame of the implicit versus the 

explicit.  

10.4.1    Adaptations observed during the unfolding of Activity 6 

Our analysis begins with the adaptations made to the implicit, unwritten and unspoken aspects of 

the researcher-designed resources. Activity 6, which included the Telescoping, Reconciling, and 

Proving Tasks, aimed at having students discover a general pattern for the factorization of     

! 

x
n
"1 

and instilling the idea of middle-term cancellation. By working on the reconciliation between CAS 

and paper-and-pencil factorizations, students were to develop their own factoring abilities and to 

conjecture and inductively extract some factoring properties. It was intended that they should 

explore and reflect on their mathematics, constructing and validating their own factoring 

techniques, and also share their work and their thinking during the collective classroom 

discussion. Technologically-speaking, it was expected that the CAS be used as a tool for verifying 

paper-and-pencil work with factor and expand, and for testing conjectures. We also expected that 

the surprise brought by the CAS through some of the verifications would lead students to strive for 

deepening their factorization techniques, but that this would require some additional elaboration 

presented at the blackboard. 

The Telescoping Task. Let us consider the beginning of the first collective discussion within 

Activity 6, where T2 conveyed his particular style for dealing with mathematical issues of a 

technical and theoretical sort (see Figure 2). The context was Question 2d: How do you explain 

the fact that the following products 
    

! 

x "1( ) x +1( ), 
    

! 

x "1( ) x
2 + x +1( ), and 

    

! 

x "1( ) x
3 + x

2 + x +1( ) result 

in a binomial? 

 

 
T2: [while writing at the board; see Figure 3] When you expand this 

    

! 

x "1( ) x +1( ) and add 

all your terms you get 
    

! 

x
2
"1( ) . Agree? And for the other one 

    

! 

x "1( ) x
2 + x +1( )  the same 
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idea, I multiply the –1 throughout, getting     

! 

"x
2
" x "1, and that is going to give you     

! 

x
3
"1. 

What do you notice about the middle parts? 
Ss (several students, all at once): They cancel out. 
T2: They cancel out, because the x just elevates the degree of everything, and when you 
bring the   

! 

"1, all the middle terms will cancel. You are going to have your     

! 

x
3  because you 

elevated the degree, but you are going to have your   

! 

"1 at the end as well, and everything 
in the middle will cancel out. That is why without doing any algebraic manipulations, if I did 

    

! 

x "1( ) x
3 + x

2 + x +1( ), I notice that these 
    

! 

x
3 + x

2 + x +1( )  are just a decreasing degree of x, 

so without doing any distributing, you figure out what the results would be. 
  

Figure 2. Extract from the discussion surrounding the Telescoping Task in T2’s class 

 

 

Figure 3. T2’s use of the blackboard during the Telescoping Task 

 

The technique and the theory of the mathematics are being talked about. But notice that T2 is not 

drawing these aspects from the students, but is rather presenting them himself. If one could say 

that our general intention about coordination between technique and theory has not been 

disregarded, our emphasis on fostering personal mathematical reflection on the part of the 

students, and on inquiring into their thinking, is clearly set aside by T2’s intervention. This is in 

contrast with T1’s style of orchestrating a whole class discussion, as will be seen with the example 

of the subsequent Reconciling Task, which is provided in Figure 4. 

 



 16 

 

 

In this activity each line of the table below must be filled in completely (all three cells), 
one row at a time. Start from the top row (the cells of the three columns) and work your 
way down. If, for a given row, the results in the left and middle columns differ, 
reconcile the two by using algebraic manipulations in the right-hand column.  
Factorization using 
paper and pencil 

Result produced by the 
FACTOR command 

Calculation to reconcile the 
two, if necessary 

! 

x
2
"1 =  

  

! 

x
3
"1 =  

  

! 

x
4
"1 = 

  

! 

x
5
"1 =  

  

! 

x
6
"1 =  

  

Figure 4. The first part of the Reconciling Task 

 

The Reconciling Task. For the factoring of     

! 

x
4
"1, the CAS had not yielded for the students that 

which they had expected: not 
    

! 

x "1( ) x
3 + x

2 + x +1( ), but rather 
    

! 

x "1( ) x +1( ) x
2 +1( ) . In T1’s class, 

the following discussion ensued (see Figure 5). 

 
T1: What does it turn out is the case? 
S1: Sometimes they like factor even more. 
T1: What we did initially is not wrong. It’s just not complete. … So for     

! 

x
4
"1, it’s what? 

S1: 
    

! 

x "1( ) x +1( ) x
2 +1( )  [teacher writes at the board: 

    

! 

x
4
"1= x "1( ) x +1( ) x

2 +1( ) ] 

T1: So let’s look at this one. How can we go about getting that without the calculator? 
S2: Use the rule. 
T1: Is that right (as the teacher writes at the board: 

    

! 

x "1( ) x
3 + x

2 + x +1( )] 

Class: Yeah. 
T1: And what do you do from there? 
S2: Group it. 
T1: And how do you group it? 
S2: [student explains how she would group the second factor, as the teacher writes at the 
board that which she dictates] 
T1: that’s one way of doing it. Bob [S3]? 
S3: [the student Bob then describes how he would factor     

! 

x
4
"1 by first breaking the x4   

part into two equal halves] 
T1: What concept have you used? 
S3: Difference of squares [the student continues his explanation of the technique, which 
the teacher writes at the board as per S3’s dictation] 
T1: So both ways reconcile the differences, coming in from different points of view. 
 

Figure 5. Extract from the discussion following the Reconciling Task in T1’s class 
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The extract provided in Figure 5 illustrates the ways in which T1 adapted the researcher-designed 

resources by filling in some of the unstated gaps in the teacher guide. He inquired into students’ 

thinking and used this as a basis for discussing some of the different approaches to factoring 

completely     

! 

x
4
"1. This was done with the stated aim of reconciling the differences between the 

unexpected result produced by the CAS and the paper-and-pencil result yielded by the general 

rule. T1 also displayed on the blackboard the various factoring approaches offered by the 

students, which thereby presented a public record of their different techniques. 

This is in contrast to the manner in which T2 responded to the implicit intentions of the researcher-

designers for the same task. As seen in the Figure 6 excerpt, T2 used the blackboard to show 

only the technique that he wanted to emphasize for the factoring of the     

! 

x
4
"1 binomial: the 

difference of squares. It would also appear that student participation was called upon with the sole 

purpose of providing an opening for T2’s own preferred approach, the one that he considered 

more efficient. Other approaches that students offered were dealt with orally.  

 
T2: Now for the     

! 

x
4
"1, if you use the trick that we were looking at, and we just write it like 

this [teacher writes on the board 
    

! 

x
4
"1( ) = x "1( ) x

3 + x
2 + x +1( )]; this is factored but not 

fully factored. When you press Factor on your calculator, what do you get? What did you  
get, Chris (S1), when you did Factor on your calculator? 
S1: 

    

! 

x "1( ) x +1( ) x
2 +1( )  

T2: [teacher wrote this response on the board] Right! Like that. So, how do we reconcile 
the two? … 
S2:  You could do difference of squares at the start. 
T2: Yes, you go back to the start, and that is what I said, you can go back to the start, and 
look at how you do it paper-and-pencil-wise.  If you go back to the start and you’ve got 
your 

    

! 

x
2
"1( ) , your 

    

! 

x
2 +1( )  [teacher writes these two factors on the blackboard] – your 

difference of squares – and then you have another difference of squares here [teacher 
points to 

    

! 

x
2
"1( )  and writes 

    

! 

x "1( ) x +1( ) below it]. … So, in another words, what we are 

discovering is that our little trick that we did, that only helps to get the 
    

! 

x "1( )  out. That 
doesn’t necessarily mean that what is left is not refactorable. … 
S3: I did the opposite, I mean, [

    

! 

x "1( ) x +1( ) x
2 +1( ) = x "1( ) x

3 + x
2 + x +1( ) ] 

T2: Reconciling the two doesn’t mean just expanding one and showing it is     

! 

x
4
"1, and I 

guess that’s what you are saying.  
S2: Instead, we can just, eh, factor out the other     

! 

x
2  and make it, for the second factor. 
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T2: So, you grouped two by two. So, that is another way you could have factored this 
bracket over here. Because it is four terms, you factor out     

! 

x
2  here; you get 

    

! 

x +1( ) , then 

you factor your 
    

! 

x +1( )  out, and you get 
    

! 

x +1( )  and 
    

! 

x
2 +1( ) . Ok? All right. [teacher does 

not write the grouping method out on the blackboard; he just points to the different terms 
and states orally S2’s method] 
 

Figure 6. Extract from the discussion surrounding the Reconciling Task in T2’s class 

 

Another instance of T2’s style of adapting what was implicitly conveyed in the resources concerns 

the factoring of     

! 

x
10
"1. Here, the surprise factor of the CAS tended not be taken advantage of, nor 

allowed to play its intended thought-provoking role. While students were still working on the 

second part of the Reconciling Task, with the polynomials from     

! 

x
7
"1 to     

! 

x
13
"1, trying to reconcile 

their paper-and-pencil factorizations with the results produced by the CAS, T2 rapidly wrote 

    

! 

x
10
"1( ) = x

5
"1( ) x

5 +1( )  on the board. He then stated: “The one that may give you some trouble 

here is the x to the 10th. I will explain why.” He proceeded to explain at the board the factorization 

    

! 

x
5 +1= x +1( ) x

4
" x

3 + x
2
" x +1( ) , with a great deal of hand-waving. He then tried to generalize 

the alternating signs and telescoping argument, but his explanation – an adaptation probably done 

on the fly – was incomplete and fuzzy, with odd powers that were multiples of three considered 

separately from other odd powers.  

A rather different situation evolved in T1’s class where the     

! 

x
10
"1 example led a student to 

conjecture a new theory involving the factoring of     

! 

x
n

+1 for odd ns – based on the CAS 

factorization of     

! 

x
5

+1, supported by the factoring pattern for the sum of cubes,     

! 

x
3

+1 (for more on 

the unfolding of this student’s conjecture, see Kieran & Guzmán, 2010). T1 encouraged the 

student to talk about the way he was thinking and to be as complete as possible in his 

explanation. 

The Proving Task. T1 believed that students would need time to get into the last task of the 

sequence, the Proving Task: Explain why 
    

! 

x +1( )  is always a factor of     

! 

x
n
"1 for even values of 

    

! 

n " 2. (Note that the teacher guide had not included any explicit suggestions in regard to the 

proving task, simply a possible solution based on the Factor Theorem, i.e., “a is a zero of the 
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polynomial 
  

! 

p x( )  iff 
  

! 

x "a( )  is a factor of 
  

! 

p x( ) ”.) T1 waited patiently until some of the students had 

ideas to submit to the class. He then asked three of them to go to the board in turn and to write 

down and explain their proofs. He requested that the class listen carefully to the explanations being 

offered by these proof-givers: “Guys, give him a chance” and “Ok, listen because this is interesting, 

it’s a completely different way of looking at it”. After each of their explanations, everyone in the 

class was encouraged to discuss and try to understand the main approach used in the proof. From 

time to time, T1 asked for further clarification, offered counter-examples, and pushed students to 

think more deeply. T1’s way of filling the gaps in the teacher guide for the Proving Task was in sync 

with the student-related intentions of the researcher-designers, and even enriched them further.  

This contrasts once again with T2, who allocated little time for the students to think about the 

Proving Task. A couple of students proposed different avenues to pursue, but T2 seemed in such a 

hurry to give his own proof, based on the Factor Theorem, that he asked them neither to come to 

the board nor to explain fully their way of thinking. It appeared here and elsewhere in Activity 6 that 

T2 assumed ownership of all the main mathematical ideas presented in class, a corollary being that 

students were not held responsible for thoroughly explaining their own thinking. 

10.4.2    Adaptations observed during the unfolding of Activity 7 

Our analysis continues, this time bearing on the adaptations made to the explicit, written and 

spoken aspects of the researcher-designed resources. Mathematics-wise, our primary intention in 

Activity 7 was to make students aware of the possible loss of solutions when they simplify an 

equation by dividing both sides by some factor. Students were thereby to be directed towards the 

more reliable solving method of isolating terms on one side and using the zero-product theorem, 

that is, “a product is zero iff either one of the factors is zero”. Both the teacher guide and the 

student task-sequence had included explicit mathematical notes in the opening block of Activity 7 

(see Figure 7). 

 
Primary idea: Factoring (taking out a common factor) as a tool for solving equations, 

particularly when used in conjunction with the “zero-product theorem”. 
Secondary ideas:  
•      Factoring (taking out a common factor) can be applied not only to constants and 

variables, but also to algebraic expressions that can be taken as objects to operate 
upon. 
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• Students should be able to bring the methods learned for solving linear and 
quadratic equations to bear on equations that are neither linear nor quadratic, per 
se; 

•  Simplifying an equation by dividing both sides by some factor may lead to a loss of 
solutions. In equations in which such simplifications are possible, the strategy of 
isolating terms on one side of the equation and using the zero-product theorem is 
generally a more effective solving method; 

•  In equations involving variables under the radical sign, verification after solving is 
not only advisable, but necessary. 

 
Figure 7. Explicit mathematical notes in both the student task-sequence and the teacher guide 

 

Student-wise, it was intended, and explicitly asked for, that they describe at a meta-level – 

perhaps quite loosely – both the patterns they were seeing within the equation and their equation-

solving approach, before actually solving the equation. We were expecting that, for the 

subsequent equation-solving task, most of them would lose a solution. Technology-wise, the CAS 

was to be used as a follow-up to the paper-and-pencil solving – a verifying device that would yield 

surprises, such as producing one more solution than they had likely obtained with their paper-and-

pencil methods. The teacher’s guide suggested a way of handling the class discussion related to 

lost solutions and their verification with the CAS (see Figure 1, presented earlier in this chapter). 

In sum, the central explicit components related to the first three tasks of Activity 7 concerned, in 

this order: (a) a focus on the meta-level aspects of solving a particular equation containing 

common factors with radicals, (b) the actual solving of a related equation having a similar pattern 

of common factors (but without radicals) and which could induce a loss of solutions, and (c) the 

verification by CAS of the paper-and-pencil solutions which would lead for many students to a 

required reconciliation of the two sets of solutions. 

All of the examples given in this section are based on T3’s practice, as it was here that we 

observed the most extensive adaptations to the explicit aspects of the researcher-designed 

resources. Specifically, his adaptations involved replacing an expression by a letter, inserting a 

transitional equation, and using the CAS to factor a quadratic. In addition, we note that T3 had an 

empathetic way of preparing students for possible task difficulties, telling them not to worry and 

reformulating each question with a phrasing that in his view was better adapted to their level of 

understanding. A notable sign of his general attitude is the fact that from the outset of the prior 
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Activity 6, in advance of bringing it to class, he told the researchers that he had decided to skip 

the final Proving Task, it being too difficult in his view. In his defence, recall that T3’s class was 

the weakest of the three. 

Replacing an Expression by a Letter. For the first proposed equation in Activity 7, 

    

! 

5 x " 4
# 
$ 
% & 

' 
( 
3

+11 x " 4 = 2x +1( ) x " 4  (Equation 1), a general reflection on how students would 

proceed to solve this equation was to be elicited. Immediately afterward, they were to be directed 

toward the simpler equation 
    

! 

y "2( )
3

"10 y "2( ) = y y "2( )  (Equation 2), which was the one to be 

actually solved. From the start, while reading and rewording the instructions, before anything 

whatsoever had been done by his students, T3 suggested replacing     

! 

x " 4  by a (see Figure 8). 

 
T3: Just imagine that this expression, root of x minus 4, is replaced by a.  It would give you 
something much simpler, wouldn’t it? So each time it’s written ‘root of x minus 4’, if we write 
a instead, we would have quite a simpler equation and then, what would you do? Because 
the principle would be, say, quite the same. Anyway, some aspects would be the same. So 
try to see what you could do to solve this equation ... or anyway, what would be your steps. 
We don’t ask you to solve it, just go with what you think you would do. There are no bad 
answers, just try. 
 

Figure 8. T3 suggested to students that they replace an expression by a letter 

 

This adaptation interfered with our intention of having students recognize by themselves in what 

facet Equations 1 and 2 have the same structure, and to what extent the solving steps they were 

asked to sketch for Equation 1 could be put to the test by actually solving Equation 2. As well, we 

note that T3 did not follow the explicitly-given sequence of holding off on the class discussion until 

after the students had worked on both Equations 1 and 2 and had tested the solutions of Equation 

2 with the CAS. Following his too early and wordy discourse on Equation 1, T3 had students work 

on Equation 1, but in fact never asked them how they viewed it at a meta level.  

Inserting a Transitional Equation. We will now see that T3’s implementation of the activity 

digressed even further from that which was explicitly presented in the researcher-designed 

resources (see Figure 9).  
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T3 [reading]: “Using paper and pencil, see whether you can first solve the following 
equation”. So they are giving you another one that may be less scary, which is y minus 2 
to the three... [He does not finish reading the second equation, but searches for a piece of 
chalk]. Well... They are giving you this one so that you can compare, they say that it is 
somewhat analogous to the ‘monster’ given just before. They say [reading]: “Factoring 
(taking out a common factor) might be useful here”. So they are giving you a hint. Ok, I 
have seen that some of you wrote interesting things, in the sense that you have already 
good ideas about how to solve. Nevertheless I’ll give one to you all, because some of you 
are facing it without knowing what to do, and that I can understand.  
I’ll do an example that is completely different.  

[He writes on the board: 
    

! 

5 a"3( ) + 2 a"3( )
2

= 3 a"3( )
3

.] I'm coming back to what I've said 
before, about root of x minus 4, if I remember well, that it could be replaced by a value, 
say, a. Ok, it may have given some of you a hint, precisely about what could be done with 
it. So here [he gets a piece of colored chalk and circles 

    

! 

a"3( ) ], if I say here that a minus 
3, if all of this parenthesis here would have been, say, x. We would be facing [he writes on 
the board:     

! 

5x + 2x
2

= 3x
3 ]. Do you agree? All I have done is that I've been saying to 

myself: Instead of writing     

! 

a"3 , to make things easier, I'll replace     

! 

a"3  by x. And then, I’m 
facing this new equation. Is this equation [pointing to the board] less scary? 
 

Figure 9. T3’s use of a transitional equation 

 

T3’s insertion of a transitional equation, accompanied by replacing the main expression by a 

letter, was an adaptation that not only further confounded our initial intentions with respect to 

students’ seeing structural similarities between the two equations, but also presented an added 

mathematical difficulty for the students: Equation 2 conveying a term in both   

! 

y  and     

! 

y "2 , the 

substitution of   

! 

x  for     

! 

y "2  gives either a two-variable equation or a term in   

! 

x  and     

! 

x + 2 . The 

transitional equation introduced by T3 did not involve such a hindrance. Whether T3 proposed it 

as a transitional stage for the students, or simply did not foresee this snag pertaining to 

substitution in Equation 2, we do not know. In any case, as the students began working on 

Equation 2, one did complain that the substitution of   

! 

x  for     

! 

y "2  gave him an   

! 

xy  term, which got 

him stuck. T3 offered him the following hint: “Nothing keeps you from going back to     

! 

y "2 .” Still a 

little later, as T3 was showing at the board a method for handling Equation 2, he replaced the 

    

! 

y "2  by   

! 

a  (while keeping a term in   

! 

ay ), factoring out an   

! 

a  (see Figure 10) and replacing back 

the   

! 

a  by     

! 

y "2 . (The possibility of substituting     

! 

a + 2  for   

! 

y  was not mentioned.) Finally, the 

equations displayed on the blackboard by T3, as a path to solve Equation 2, were: 
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! 

a a
2
"10" y( ) = 0 , 

    

! 

y "2( ) y "2( )
2

"10" y
# 

$ 
% 

& 

' 
( = 0 , and 

    

! 

y "2( ) y "6( ) y +1( ) = 0. The fact that T3 left out 

many of the intermediate steps of the solving process and used oral commentary to fill the missing 

steps is quite surprising, in view of his meta-level remarks to the students on how difficult they 

must be finding this work.  

 

 

 

Figure 10. An unexpected transitional equation before solving Equation 2 

 

Using CAS to factor a quadratic. Further adaptations by T3 concerned his use of the CAS 

technology. When discussing the solving of     

! 

"3x
3

+ 2x
2

+ 5x = 0 (derived from the transitional 

equation 
    

! 

5 a"3( ) + 2 a"3( )
2

= 3 a"3( )
3

 by substituting   

! 

x  for     

! 

a"3), T3 suggested that, the common 

factor   

! 

x  having been taken out, students may then use the CAS to factor     

! 

"3x
2

+ 2x + 5 . Perhaps 

this suggestion was made in the interests of time or to reduce some of the overall complexity of 

the task. Nevertheless, it was outside the suggested route of solving with paper-and-pencil and, 

only later, verifying the solutions with the CAS. Moreover, for the third question of this first part of 

the task-sequence – the one that asked students to check their solutions of Equation 2 with those 

produced by the CAS – T3 chose to eliminate this question, having introduced Equation 2 with a 

view-screen display of the three solutions yielded by the CAS and subsequently asking students 

to find themselves the same three solutions with paper and pencil. Thus, the surprise realization 
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that there might be three solutions, and how it came to be that one of them had been lost through 

their paper-and-pencil techniques, was never provoked in T3’s class. 

10.5    Discussion 

10.5.1   The implicit versus the explicit in task-designers’ intentions 

Our analysis of the ways in which teachers adapted the researchers’ implicit intentions with 

respect to Activity 6 indicated adaptive activity not only in all three of the key features of the task-

based resources but also in their coordination. We observed that our implicit emphasis on 

fostering personal mathematical reflection on the part of the students, and on inquiring into their 

thinking, was set aside by most of T2’s interventions. Similarly, he used the blackboard to show 

only the techniques that he wanted to stress. In a related manner, the surprise factor of the CAS 

was not taken full advantage of with respect to provoking student thinking. In contrast, our 

analysis of T1’s adaptive activity indicated a different manner of filling in the unstated gaps in the 

teacher guide. He thoroughly inquired into students’ thinking and used this as a basis for class 

discussions. T1 also displayed on the blackboard the various approaches offered by the students, 

thereby presenting a public trace of their different techniques. Our analysis of the ways in which 

T3 adapted the researchers’ explicit intentions with respect to Activity 7 disclosed significant 

adaptive activity with respect to that which was explicitly documented in the resources regarding 

the mathematics, the students, and the technology. 

Researchers (e.g., Freeman & Porter, 1989) have argued that, if teachers’ guides were more 

explicit and less ambiguous, the degree of closeness between teaching practice with these 

resources and the intentions of the resource designers could be greater. For example, 

Manouchehri and Goodman (1998) have critiqued certain reform-based curricula for not “providing 

the teachers with detailed methods of how to address the content development” (p. 36). Our 

findings are in disagreement with the argument that greater detail will necessarily lead to a closer 

following of curriculum materials. No matter how explicitly expressed the researcher-designers’ 

intentions be, adaptation of the resources will take place. Our comparison of the nature of the 

adaptations that were forged with respect to both the implicitly-suggested and explicitly-expressed 

intentions of the researcher-designers showed that, in both intentional domains, teachers will 
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adapt the resources that they use. This is not to suggest that researchers and curriculum 

developers should not attempt to make as explicit as possible their intentions with respect to the 

content and use of the resources they design, but that they should not expect fidelity. They should 

rather expect that – as will be discussed shortly – the personal beliefs, goals, and habitual 

classroom practice of the teachers may be at variance with the epistemological and pedagogical 

assumptions underlying the researcher-designed resources and that this will inevitably lead to 

adaptation. 

10.5.2  The underpinnings of the adaptations that teachers made to the resources  

Our finding that, whether the intentions of the researcher-designers were explicitly stated or 

implicitly suggested, teachers adapted the given resources leads naturally to the question as to 

what it was that underpinned these adaptations, that is, why were the resources adapted in the 

ways that they were? An additional question concerns the issue of the consistency of these 

adaptations within individual teachers. 

The teachers’ mathematical knowledge clearly filtered their interpretation of the mathematical 

intentions of the researcher-designers. This was seen in T3’s inappropriate choice of example that 

he used when inserting his substitution technique into the task-sequence. Pedagogical content 

knowledge also played a role. It underpinned the well-developed ways in which T1 orchestrated 

the whole-class discussions with students being asked to explain their thinking to the class at 

large, the differential ways in which T1 and T2 used the blackboard for keeping a written trace of 

students’ thinking and as a tool for mediating the reconciliation of paper-and-pencil and CAS 

responses, and the varying roles for the CAS technology that were encouraged by each of T1, T2, 

and T3. 

Teachers’ beliefs accounted for much of their adaptive activity with respect to their use of the 

researcher-designed resources, from T1 who believed his students could and should be 

challenged mathematically and thereby adapted the unfolding of the task-sequences in such a 

way that students be held responsible for their own mathematical thinking, to T2 who believed that 

the teacher is the mathematical focal point of the classroom, to T3 who believed his students 

required a certain social and mathematical security net.  
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In keeping with Schoenfeld (1998), we have attributed beliefs and knowledge to be at the root of 

the adaptations that the individual teachers carried out in their day-to-day teaching with our 

resources. However, such attributions do not account entirely for the global picture of each 

teacher’s approach to adaptation. The enactment of a teacher’s beliefs, which translates into both 

short- and long-term goals in the classroom, also constitutes a ‘pedagogical contract’ with the 

students – a certain set of expectations of the teacher for the students and vice versa (note that 

this pedagogical contract takes in the ‘didactical contract’ of Brousseau, 1997, but also includes 

more, namely certain attitudes, beliefs, and convictions of the teacher that are not tied specifically 

to the mathematical content being considered).  

For example, T3 was extremely sensitive to the perceived needs and abilities of his students, as 

inferred from his rewording of the task questions and alteration of the content so as to try to make 

the mathematics more accessible to them. He seemed reluctant to put his students into potentially 

awkward situations where they might not know how to express themselves; thus he engaged the 

class in very few collective discussions. He called upon students whom he thought might have the 

beginnings of an answer and then proceeded to elaborate on their rather sketchy responses. In 

short, he made few mathematical demands of his students. His interactions with the students 

always weighed on the side of showing empathy toward them. 

In contrast, T2 delighted in demonstrating his mathematical prowess to the students. This seemed 

to be a central part of the identity he had forged for himself in the mathematics classroom. His 

students, who were very bright, also seemed to appreciate his shows of mathematical bravado. 

He used the beginnings of students’ oral answers as the spark for his own elaborations of the 

underlying mathematics. He never asked students to respond more fully, but rather attempted to 

anticipate the direction in which their thinking was headed. There seemed to be an unwritten 

contract between him and his students that he was the main mathematical resource of the 

classroom.  

A rather different pedagogical contract was at play in T1’s class. T1, who was highly respectful of 

his students, not only encouraged the expression of their mathematical thinking but also asked 

them for further explanation and justification. During the whole-class discussions, he often 
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assumed what we came to call his discussion posture – sitting on the edge of one of the empty 

student-desks at a front corner of the classroom, thereby indicating to the class that it was now 

time for some serious collective thinking and sharing of ideas. He intended that students be 

pushed mathematically and had confidence that they could rise to the occasion, if encouraged to 

do so – which they did. 

The three teachers’ deeply held beliefs, which constituted a manner of interacting with their 

students, lent a certain consistency to their individual adaptations of our resources. This 

consistency was also seen when impromptu activity occurred. For example, when faced with the 

unexpected proofs generated by a few of the students, T1 asked the students to come to the front 

to explain their thinking to the rest of the class; these exposés were then followed by classroom 

discussion of the central ideas of the proofs. In contrast, T2 when similarly faced with an 

unexpected proof idea from a student tried to interpret it on his own and illustrate it himself at the 

board. T3, as per his intentional goals vis-à-vis his students, decided not to embark at all on the 

proving task. Thus, even if the unexpected led to different ways of handling the situation, each 

teacher acted on the spur of the moment in ways that were consistent with his own convictions 

and ways of interacting with his class. This finding makes contact with Remillard’s (Chapter 6) 

observation that teachers’ modes of engagement with resources are shaped by their expectations, 

beliefs, and routines, thereby bestowing a degree of stability on these modes. Sensevy 

(Chapter 3) makes a similar point with regard to the enactment of the threefold process of 

teaching practice by which documents, prior intentions, and intentions in action are intimately 

linked together. Also related to this discussion are the findings reported by Drijvers (Chapter 14), 

who describes the unfolding of teachers’ intentions with respect to their classroom use of 

computer-based resources in terms of didactical configuration, exploitation mode, and didactical 

performance.   

Lagrange and Monaghan (2010) have argued that inconsistency characterizes the practice of 

teachers in dealing with the complexity of classroom use of technology. While we would agree 

that the presence of the CAS technology within our researcher-designed resources led to more 

unplanned and impromptu activity than might otherwise be the case in a mathematics class, we 
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would have to disagree with the substance of their claim. We argue instead that the manner in 

which individual teachers engaged in this impromptu activity was indeed consistent. An example 

involves the unexpected complete factorization of     

! 

x
10
"1 by the CAS with its unanticipated 

factorization of the 
    

! 

x
5 +1( )  factor. This led to on-the-fly decision-making on the part of both T1 and 

T2: for T2, it was to gain control of the mathematical situation by having himself present to the 

class the factorization of this ‘new’ class of expressions; for T1, it was to give the student who was 

provoked into thinking about a new factorization rule for     

! 

x
n

+1 the time to express his new 

conjecture and the examples that were supporting it. Just as with the proof example above, T1 

and T2 each handled differently the impromptu foray occasioned by unexpected results with the 

technology; nevertheless, their approaches were clearly consistent with their individual deep-

seated beliefs and habitual manner of interacting with their students. 

10.6   Concluding remarks  

Our study found that adaptive shaping occurred with respect to all three key features of the 

researcher-designed resources (the mathematics, the students, and the technology), whether our 

intentions with respect to those features were explicitly stated or implicitly suggested. The results 

of this study have also shown how embarking with the same set of task-sequences, and sharing 

the same goal of participating in a research project aimed at developing the technical and 

theoretical knowledge of algebra students within a CAS-supported environment, can lead to quite 

different uses of the resources. The teachers brought into the study their own beliefs, knowledge, 

and customary ways of interacting with their students. Quite clearly this had an impact for each 

class on the nature of the mathematical activity engaged in. Different adaptations of the same 

resources either promoted or impeded the emergence of different techniques and theoretical-

conceptual elements. But that is a whole other story. 
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