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This paper describes the practice of a 10th grade algebra teacher during whole-class 
discussions of equivalence of algebraic expressions some of which contain 
restrictions. The transcripts of the whole-class discussions were structured into a 
series of content-process cycles, with each shift in mathematical content signaling the 
start of a new cycle. Each cycle is also characterized by a particular role played by 
the CAS technology. The ways in which the teacher involved his students in 
discussing the mathematics of the task illustrates how algebra can be problematized 
with the aid of technology in whole-class discussions and thereby potentially lead to 
students’ richer understanding of the mathematical content. The paper concludes 
with a synthesis of the strategies the teacher used to make the class discussions work.  
INTRODUCTION AND RELATED LITERATURE 
Since the advent of reform-based approaches to the teaching of school mathematics 
(NCTM, 1989), classroom discussion has been considered central to students’ 
mathematical learning. However, teachers have admitted to finding it difficult to 
encourage discussion in algebra lessons, especially when the content involves the 
literal-symbolic and associated concepts and techniques (Sherin, 2002). Research 
interest in teaching practice, and the ways in which classroom discussion might be 
orchestrated so as to induce greater involvement and deeper mathematical learning on 
the part of students, is reflected in a few studies that have recently been carried out. 
These studies have focused on the role of, for example, teacher talk in the classroom 
(Boaler, 2003), teachers’ revoicing of students’ ideas within the context of classroom 
discussion (O’Connor, 2001), and norms that encourage mathematically-productive 
participation in classroom discussion (Yackel & Cobb, 1996).  
Some of these studies have involved technology, in particular graphing technology 
(e.g., Doerr & Zangor, 2000; Huntley et al., 2000). Goos et al. (2003) noted that, 
when calculators and computers are permitted to become a part of face-to-face 
discussions, they facilitate communication and sharing of knowledge. One aspect of 
technology use that has been found to stimulate mathematical discussion in the 
classroom is the fact that the technology often surprises with unexpected 
representations or output (e.g., Hershkowitz & Kieran, 2001). However, none of this 
research has inquired into the particular combination of teaching practice, whole-
class discussion, and CAS technology. In this regard, the research question that 
motivates the analysis presented in this paper is the following: What is the nature of 
teaching practice that builds on the power of Computer Algebra System (CAS) 



 

technology in order to problematize the mathematics that is discussed in the algebra 
classroom? Problematizing the mathematics means making it open to discussion, that 
is, creating a mathematical arena in which one poses questions and tries to think 
deeply about the mathematics, including what might appear to be inconsistencies or 
contradictions and, in fact, using dilemmas provoked by the technology as a means to 
move one’s thinking forward. This paper describes the practice of a 10th grade 
algebra teacher during whole-class discussions of equivalence of algebraic 
expressions some of which contain restrictions. The ways in which he involved his 
students in discussing the mathematics of the task, and in coordinating this with the 
related outputs provided by the CAS technology, illustrates how algebra can be 
problematized with the aid of technology in whole-class discussions and thereby 
potentially lead to students’ richer understanding of the mathematical content.  
THE STUDY 
This study is part of an ongoing program of research. The previous phase of our 
research, from which the data for this analysis were drawn, involved six 10th grade 
classes (15-year-olds), each of which was observed and videotaped over a five-month 
period. While student learning was the focus of the previous research (see, e.g., 
Kieran & Drijvers, 2006), it is teaching practice that is the current emphasis. The 
teacher whose practice is analyzed in this paper is one of the six initial teachers. We 
decided to start our analyses with this particular teacher because his interactions with 
the students were always supportive of their thinking; also he was a teacher whose 
eye remained on the mathematical horizon (Ball, 1993). He, a teacher of mathematics 
for five years, believed that it was important for students to struggle a little with 
mathematical tasks. He also encouraged his students to talk about their mathematics 
in class; he liked to take the time needed to elicit their thinking, rather than quickly 
give them the answers. 
As a technique for structuring and analyzing our data in terms of teaching practice – 
practice aimed at encouraging whole-class mathematical discussion in CAS-
supported algebra classes – we decided to use an approach that we adapted from 
Sherin (2002): We structured the transcripts of the whole-class discussions into a 
series of content-process cycles, with each shift in mathematical content signaling the 
start of a new cycle. Each cycle is also characterized by a particular role played by 
the CAS agent (Boaler, 2003). 
ANALYSIS OF CYCLES OF WHOLE-CLASS DISCUSSIONS 
For the previous study, the research team had created several sets of activities that 
aimed at supporting the co-emergence of technique and theory. One of these sets of 
activities provides the context for this paper – equivalence of algebraic expressions 
and the role of restrictions in determining admissible values for the equivalence. At 
the start of the teaching sequence, numerical evaluation of expressions by use of the 
CAS served as the entry point. One of the main tasks here was the Numerical 
Substitution Task (Figure 1), where two numbers to be substituted were given and 



 

students were to choose two others. It aimed at students’ noticing that some pairs of 
expressions seemed always to end up with equal results. The task was followed by 
two reflection questions.  
The task involved the following definition of equivalence of expressions: 

We specify a set of admissible numbers for x (e.g., excluding the numbers where one of the 
expressions is not defined). If, for any admissible number that replaces x, each of the 
expressions gives the same value, we say that these expressions are equivalent on the set of 
admissible values. 

The stress on the set of admissible numbers was made deliberately by the designers, 
so as to lead students to become aware of the attention that one has to pay to 
considering possible restrictions on the equivalence of expressions. Expression 5 in 
Figure 1 was a first example of this.  

 
Figure 1. Numerical Substitution Task 

The two reflection questions that followed were: 
Question 1B: Compare the results obtained for the various expressions in the table above. 
Record what you observe in the box below.  
Question 1C: Based on your observations with regard to the table above, what do you 
conjecture would happen if you extended the table to include other values of x?  

After the students had written up their answers to these two questions, the following 
whole-class discussions ensued.  
Cycle 1: Venturing into Equivalence of Algebraic Expressions – CAS as a 
Calculating Agent 
To initiate the discussion, the teacher posed an open question to the entire class as to 
what they had observed while filling in the table:  

L43. Teacher:  So, 1B, “compare the results obtained” (as he reads part of the task question); what 
results did you obtain? Anyone?  

Notice that he started immediately with Q.1B on students’ interpretations. His 
question aimed at uncovering the regularities that the students might have noticed as 



 

they filled the table with the values obtained by the CAS substitution operator (Exp | 
x=…). One student responded:  

L44. Susan:  Expressions 3 and 5 end up having the same answers. So [teacher wrote on the 
board: #3 = #5].  

L45. Teacher:  For all of the ones you put in, they ended up having the same answer?  
L46. Susan: Yes, and 1 and 4 also.  
L47. Teacher:  1 and which one? 
L48. Susan:  1 and 4 [teacher wrote on the board: #1 = #4].  

We note a particular kind of “notational revoicing” that the teacher has just engaged 
in: He translated “having the same answers” to the equality #3 = #5. The inference is 
that, if two algebraic expressions yield the same results when one substitutes a value 
for x, then they are equal. Clearly, the equality of two algebraic expressions for 
certain values of x does not imply that the expressions are equivalent. The latter 
requires consideration of the domain – that is, whether the expressions are equal for 
all, or almost all, real values versus being equal for only some real values of x. 
Furthermore, the equivalence of Expressions 3 and 5 is constrained by a restriction.  
Up to now, Susan’s observations, with which the rest of the class seemed to agree, 
had centered on the equality of the numerical results that had been obtained. 
However, at this particular moment, another student wished to add an idea to the 
discussion – one that brought the talk from a numerical to an algebraic level: 

L49. Ken:  The expressions are the same thing as the other ones, just in a different form.  
L50. Teacher: So you’re saying that these pairs of expressions (points to #3 = #5 and 

 #1 = #4) are exactly the same?  
L51. Ken:  Equivalent representations of the same thing.  

This interesting comment on the part of the student immediately led the teacher to 
assume his whole-class-discussion stance: He sat on the corner of an empty desk near 
the front left-hand side of the class. This suggested that a discussion would ensue – a 
discussion that could take some time and some thinking. Thus, he sent a signal to the 
class to listen to and question what was in the process of being discussed. The teacher 
then invited the student, Ken, to elaborate further: 

L52. Teacher: Equivalent representations? Did anybody not get that? So what are we saying? What did 
you mean by what you said, Ken? 

L53. Ken:  They represent the same thing, they give you…like if you substitute in x, like it will 
come out to the same answer.  

L54. Teacher: But why is that the case? 
L55. Ken:  Because they’re just a different form, like they’re an unfactored form of a, uh, 

multiplication of two binomials, or something like that. 

The student’s difficulties in expressing his mathematical idea in a clear way led to a 
further question by the teacher, this time directed to the entire class: 

L56. Teacher: Does everyone follow what he is saying?  
L57. Class:  Uh, huh (some students) … no (other students) 
L58. Teacher: No? 
L59. Linda:  I don’t understand what he is saying. 
L60. Teacher: Then stop me. So another way to talk about it, I guess, Ken, would be that they could 

each be represented in a common form. 



 

Here the teacher (L60) revoiced Ken’s prior response, but then asked the class to 
explain (L62) what they thought his revoicing meant. 

L61. Ken:  Yeah 
L62. Teacher (to the class): Yes? What do I mean by a common form? 
L63. Linda:  Simplified? 
L64. Teacher: Well, sort of 
L65. Linda:  Factored 
L66. Sara:  Expanded … 

The teacher next decided to pull together the last few contributions to the discussion, 
and in the process added a couple of technical points: 

L69a. Teacher: So, in order to be in common form you may have to expand, you may have to factor, 
you may have to do a combination of the two. You may have to stop half way to get a 
common form. 

Résumé of Cycle 1. In this first cycle, the technology played a role in the whole-class 
discussion, but one behind the scenes – the CAS had permitted the students to rapidly 
and correctly evaluate the five given algebraic expressions. So, while the CAS was 
not mentioned explicitly, as agent of calculation it provided the basis for the 
mathematical discussion that ensued. The content of this cycle focused on the fact 
that some pairs of expressions, when evaluated numerically, produce the same 
numerical values. This was linked to algebraic ideas of common form and discourse 
such as, “equivalent representations of the same thing,” which opened up to the issue 
of restrictions in the next cycle. The orchestration of the whole-class discussion was 
highlighted right from the start with the teacher’s inquiring into the students’ thinking 
regarding the mathematics of the task at hand. He did this by asking for their 
observations, their elaborations, and their clarifications.  
Cycle 2: Refining the Concept of Equivalent Expressions to Include 
Consideration of Restrictions – CAS as a Provoking Agent 
In this cycle, which began immediately after the previous one ended, the teacher 
wanted to dig more deeply into students’ conjectures as to what would happen if they 
extended the table to include certain values of x. The issue was that Expressions 3 
and 5 were equivalent under a restricted domain that excluded -2 from the set of 
admissible values. Even though an open question related to this issue had been posed 
above in L45, no student had brought forth the idea of restrictions.  

L69b. Teacher: Does anyone not agree with these two statements (i.e., #3 = #5, #1 = #4) for any value 
that they put in? Is it true for all values? [pause] It’s true for all values in both pairs of 
expressions? 

L70. Yannick: It’s the exact same equation [he means expression]. If you factor it out, they turn out to 
be exactly the same. 

It was not clear (L70) whether Yannick had, in fact, used the CAS to factor 
Expressions 3 and 5. If he had, he would have observed – as he had said – the same 
factored (and simplified) expression for both. However, the CAS would not have 
alerted him to the issue of a restriction for Expression 5 because the CAS we used 



 

(TI-92 Plus) did not display restrictions. Not obtaining any disagreement from the 
class regarding this issue, the teacher continued with a less open formulation (L75):  

L75 Teacher: It would always be the same? So whatever you put in for number 3 will always give you 
the same as for number 5? [pause] There’s no exception to that rule?  

L76. Bob:  Yeah, there is.  
L77. Yannick: It’s the exact same equation [i.e., expression]. It’s always equal. 
L78. Bob:  Well I did negative two and it didn’t work.  
L79. Art:  If you put in negative two in the fifth one, then the expression’s undefined.  

Although Bob and Art had both used the CAS to evaluate for 

! 

x = "2 , they had not 
stated why it did not work. This led the teacher to ask them to justify their claims:  

L80. Teacher: Why? 
L81. Art:  Because it will be divide by zero.  
L82. Bob:  Ok, because it’s a restriction. 

But the teacher felt that the students had not yet linked this restriction to the issue of 
the equivalence of the two expressions. Thus, he encouraged further discussion. The 
voice of the CAS emerged via Matt who had just tried out the following with CAS:  

L86. Matt: If you do what Art said [L79], and instead factor number 5, and then put in negative two as 
a substitute for x, it will give you the same answer as number 3. 

Matt had proposed that they transform Expression 5, by using the CAS factor 
command, and only then do the substitution of x = -2. A potential conflict had just 
arisen here: evaluating at x = -2 before, or after simplifying the given expression, 
yielded two different answers. In the former case, it produced “undefined” and, in the 
latter, -84. The numerical output of -84 was the same as that obtained when 
Expression 3 was evaluated at x = -2. So the teacher confronted the class: 

L89. Teacher: So, which is right and which is wrong?  
L90. Yannick: One just isn’t formatted properly. 
L91. Teacher: What’s the answer if you put -2 in? 
L92. Matt:  Undefined. Well, -84. That’s what it should be. 
L93. Linda:  What? 
L94. Teacher: It should be? (with an emphasis on should). 
L95. Matt:  When you factor it and you put in negative two it will give you negative eighty-four as 

the answer. 
L96. Teacher: But are you missing something there?  
L97. Matt:  The restriction.  

However, the class did not quite see yet that they should remove –2 from the set of 
admissible values for Expressions 3 and 5, as was suggested by the conversation that 
followed. As the discussion continued to unfold, it became clear that this issue was 
not going to be easily resolved: 

L98.   Teacher: What is the restriction, what does it mean?  
L99.   Matt:  x can’t equal negative two.  
L100. Teacher: What does it mean, why is that a restriction?  
L101. Matt:  Because you can’t divide by zero.  
L102. Teacher: So should it be negative eighty-four or should it be undefined? 
L103. Matt:  Undefined. 
L104. Yannick: But if you factor it out? 
L105. Teacher: You need to leave the, you need to be aware of that restriction.  



 

The teacher realized that the class was at an impasse with respect to the mathematics 
at stake and decided to leave aside for the time being the discussion on restrictions. 
Students were not linking the concept of restrictions with that of equivalence. But, the 
teacher knew that there would be other tasks coming up that involved new CAS 
commands and more work on equivalence; thus, he would be able to pursue in a later 
discussion the relation of restrictions to equivalent expressions. 
Résumé of Cycle 2. This cycle began with a shift toward the issue of restrictions, 
which the teacher orchestrated by returning to, and questioning, an assertion made 
earlier by one of the students. However, the issue deepened when another student 
shared his CAS explorations with the class – explorations that had allowed him to 
“remove the restriction” by factoring and simplifying it away. The class was thus 
faced with a mathematical dilemma: two different evaluations of the same 
expression, depending on the sequence preceding its evaluation. The teacher’s 
orchestration included persisting with his initial query, asking students to be more 
complete in their responses, and even confronting them with the question as to which 
was right and which was wrong. Eventually, he reminded them that they should not 
lose sight of the restriction, but realized that they needed more time and additional 
mathematical activity to adequately think about relating restrictions to equivalence.  
DISCUSSION AND CONCLUDING REMARKS 
In closing, we revisit the issue of the documented difficulties experienced by teachers 
(e.g., Sherin, 2002) in generating and maintaining whole-class discussions in literal-
symbolic algebra lessons, and the potential of CAS technology to reduce such 
difficulties. But, first, two caveats. One is a design issue and concerns the tasks. It 
should be said that the tasks in our study included reflection-type questions that were 
related to specific output from the CAS and that asked students to think about what 
these outputs meant. The second touches upon the fit between such tasks and the 
teacher’s view of how best to bring out the mathematics inherent in them. The teacher 
in our study considered class discussions to be of crucial importance in this regard.  
Even if the mathematics in these tasks involved the letter-symbolic – an area known 
to be difficult for engaging students in whole-class discussion – the teacher made 
these discussions work. He employed several strategies, such as: 
• phrasing open-ended questions that stimulated, queried as to meaning, asked 

whether there was disagreement, and sought precision or clarification;  
• encouraging student ideas, reflection, and discussion, and signaling the latter by a 

change in his posture that suggested that they were about to engage in some 
thinking that could take time;  

• revoicing students’ formulation of ideas; and  
• elaborating students’ ideas, but only after trying repeatedly to have these 

elaborations emerge spontaneously from them. 
The role that the CAS played was central to the quality of these whole-class 
discussions in that it was the technology that underpinned both the students’ 



 

contributions to the discussions and the teacher’s inviting of these contributions. As 
the calculating agent behind the scenes in the first cycle of discussion, the CAS had 
provided the evaluations that permitted students to talk about their observations and 
conjectures. As the provoking agent in the second cycle of discussion – an agent 
whose role had also included being available for students’ generating examples and 
their testing and verifying conjectures – the CAS permitted students to question, 
within a single discussion, the issues of restrictions, division by zero, and the pseudo-
removal of restrictions when an expression is factored and simplified. Even if the 
questions that had been raised were not all resolved by the end of the discussion, the 
CAS had clearly played a role not only in adding to the texture of the discussion but 
also in helping students begin to realize that they had to specify the admissible 
domain for the equivalence while the expressions were in their original form. 
The analysis of the algebra teaching practice that was presented in this paper 
illustrates how CAS technology can be used as a basis for orchestrating whole-class 
discussion – discussion that problematizes mathematics with the help of technology.   
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