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Abstract: This article focuses on the teaching practice of one 10th grade teacher, 
who participated in a research project involving the use of novel tasks and CAS 
technology. The classroom lessons that are analyzed centered on a proving problem 
that was embedded within an extended task situation on factoring polynomials. A 
two-fold analysis is presented, the first one focusing on what transpired during the 
proving activity. The second analysis draws on and connects the classroom 
observations with a follow-up interview that was held with the teacher. His 
reflections during the interview allow us to discuss both what changed in this 
teacher and what enabled these changes.  
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In their review of the emerging field of research in mathematics teacher education, Adler, 
Ball, Krainer, Lin, and Novotna (2005) have argued that we need to better understand 
how teachers learn, from what opportunities, and under what conditions. The research 
findings that we recount in this article provide a compelling case for the particular 
opportunities and conditions under which the knowledge and teaching practice of a 
mathematics teacher evolved. 
 

THE CONTEXT OF THE PRESENT STUDY 
 
When our research group1 developed the program of research that included the present 
study, it was decided that the use of new technologies (i.e., Computer Algebra Systems – 
CAS) for the teaching of algebra would be one of its principal components. Another was 
the design of novel tasks that would both take advantage of the technology to further the 
growth of algebraic reasoning and focus on the interplay between algebraic theory and 
technique. The theoretical framework that underpins the research, one that we refer to as 
the Task-Technique-Theory frame (see Kieran & Drijvers, 2006, for details), draws upon 
Artigue’s (2002) and Lagrange’s (2002) adaptation of Chevallard’s (1999) 

                                                
1 Our appreciation to the other members of the research group, which included at the time that the program 
of research was elaborated, André Boileau, Denis Tanguay, Fernando Hitt, and Luis Saldanha, as well as 
the consultant, Michèle Artigue.  
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anthropological theory of didactics. From their research observations, Artigue and her 
colleagues came to see techniques as a link between tasks and theoretical reflection, in 
other words, that the learning of techniques was vital to related theoretical thinking. 
Based on this notion, our research group developed a research program that 
conceptualized algebra learning at the high school level in terms of a dynamic among 
task, technique, and theory, within technological environments. 
 
At the same time that we began to create a series of tasks that would invite both technical 
and theoretical development in 10th grade algebra students, we also made contact with 
several practicing mathematics teachers to see if they might be interested in collaborating 
with us. The form of collaboration that we arranged was on several levels. First, the 
teachers were our practitioner-experts who, within a workshop setting, provided us with 
feedback regarding the nature of the tasks that we were conceptualizing. Second, after 
modifying the tasks in the light of the teachers’ feedback, we requested that, at the 
beginning of the following semester, they integrate the entire set of tasks into their 
regular mathematics teaching and that they be willing to have us act as observers in their 
classrooms. Third, throughout the course of our classroom observations, which occurred 
over a five-month period in each class, we also offered a form of ongoing support to the 
participating teachers by being available to discuss with them whatever concerns they 
might have. In addition, we conducted interviews with some of them immediately after 
certain lessons that we had perceived to be worthy of further conversation, lessons that 
we had thought might even be considered pivotal moments in their practice. The 
following narrative concerns one such pivotal two-lesson sequence, taught by the teacher 
Michael.  
 

MICHAEL’S STORY 
 
Some Background 
 
Michael was one of the teachers involved in the project. Up to the time of the present 
study, we had already observed 15 of his classes, that is to say each of the lessons in 
which he had thus far integrated a CAS-supported task from the set that had been created 
for the research project. Michael, whose undergraduate degree and teacher training had 
been done in the U.K., had been teaching mathematics for five years, but he had not had a 
great deal of prior experience with technology use in mathematics teaching, except for 
the graphing calculator. He was a teacher who, along with encouraging his pupils to talk 
about their mathematics in class, thought that it was important for them to struggle a little 
with mathematical tasks. He liked to take the time needed to elicit students’ thinking, 
rather than quickly give them the answers.   
 
We began to observe Michael’s class from the very beginning of the Grade 10 school 
year. The students in this class had learned a few basic techniques of factoring 
polynomials (for the difference of squares and for factorable trinomials) and the solving 
of linear and quadratic equations during their 9th grade mathematics course. They had 
used graphing calculators on a regular basis; however, they had not had any experience 
with symbol-manipulating calculators prior to the onset of our project, which made use of 
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the TI-92 Plus hand-held, CAS calculator. These students were already quite skilled in 
algebraic manipulation, as was borne out by the results of a pretest we administered at the 
beginning of the study; but we were informed that they had never engaged in any activity 
related to proving, either in geometry or in algebra. 
 
This article concerns the two lessons that had involved the xn – 1 task set (hereinafter 
referred to simply as the xn – 1 task), the last component of which was a proof problem. 
We observed, and videotaped, both of these class lessons. The day after the close of the 
two lessons, the first author interviewed Michael. The next few paragraphs describe first 
the task and then our classroom observations of the proving segment of the task, followed 
by an analysis of this activity. Then we present extracts from the interview with Michael 
and a second analysis that draws on both his interview reflections and our earlier 
classroom observations.  
 
The xn - 1 Task 
  
The design for the two-lesson sequence was an elaboration of earlier work carried out by 
Mounier and Aldon (1996) with their 16- to 18-year-old students on a task that involved 
conjecturing and proving general factorizations of xn !1 . Our task activity had three 
parts. The first part, which involved CAS as well as paper and pencil, aimed at promoting 
an awareness of the presence of the factor 

 

(x !1)  in the given factored forms of the 
expressions 

 

x 2 !1, 

 

x 3 !1, and 

 

x 4 !1 (see Figure 1), as well as leading to the generalized 
form 

 

xn !1= (x !1)(xn!1 + xn!2 + ...+ x +1) . 
 

1. Perform the indicated operations: (x – 1)(x + 1); (x – 1)(x2 + x + 1). 
2. Without doing any algebraic manipulation, anticipate the result of the following product 

 

x ! 1( ) x3 + x2 + x + 1" 
# 

$ 
% =  

3. Verify the above result using paper and pencil, and then using the calculator. 
4. What do the following three expressions have in common? And, also, how do they differ?    

(x – 1)(x + 1), (x – 1)(x2 + x + 1),  and 

 

x ! 1( ) x 3 + x 2 + x + 1( ) . 
5. How do you explain the fact that when you multiply: i) the two binomials above, ii) the 

binomial with the trinomial above, and iii) the binomial with the quadrinomial above, you 
always obtain a binomial as the product? 

6. On the basis of the expressions we have found so far, predict a factorization of the expression 

 

x 5 ! 1.  
Figure 1. Some of the initial tasks of the activity 

 
The next part of the activity involved students’ confronting the paper-and-pencil 
factorizations that they had produced for xn !1 , with integer values of n from 2 to 6 (and 
then from 7 to 13), with the completely factored forms produced by the CAS, and in 
reconciling these two factorizations (see Figure 2).  
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In this activity each line of the table below must be filled in completely (all three cells), 
one row at a time. Start from the top row (the cells of the three columns) and work your 
way down. If, for a given row, the results in the left and middle columns differ, reconcile 
the two by using algebraic manipulations in the right hand column.  
Factorization using 
paper and pencil 

Result produced by the 
FACTOR command 

Calculation to reconcile the 
two, if necessary 

=!12x  
  

=!13x  
  

=!14x  
  

=!15x  
  

=!16x  
  

Figure 2. Task in which students confront the completely factored forms produced by the CAS 
 
An important aspect of this part of the activity involved reflecting and forming 
conjectures (see Figure 3) on the relations between particular expressions of the 
xn !1 family and their completely factored forms.  
 

Conjecture, in general, for what numbers n will the factorization of xn − 1: 
i) contain exactly two factors? 
ii) contain more than two factors? 
iii) include 

 

x + 1( )  as a factor? 
Please explain. 

Figure 3. Task in which students examine more closely the nature of the factors produced by the CAS 
 

The final part of the activity (see Figure 4) focused on students’ proving one of the 
conjectures that they had generated during the previous part of the task. This proving 
activity is the central component of the analysis of teacher practice and teacher change 
that we present in this article.  

 
  
Prove that (

 

x +1) is always a factor of xn !1  for even values of n. 
 

Figure 4. The proving task 
 
 
Our Classroom Observations 
  
After students had completed the first two parts of the 

 

xn !1 activity, they were faced 
with the proving segment of the task: Prove that 

 

(x +1) is always a factor of 

 

xn !1 for 
even values of n. Mathematically experienced students might possibly have been able to 
generate a proof along the following lines:  
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xn – 1 = x2k – 1  (for n even) 

= (x2)k – 1 

= (x2 – 1)(x2

 

k! 1
 + x2

 

k! 2
 …  + 1) 

= (x + 1)(x – 1)(      …       ) 
 
However, our research team did not consider for an instant that such a symbolic form of 
proof might be forthcoming from the 15- and 16-year-olds in our study. Nevertheless, we 
did entertain the idea that some generic form of proof might be produced. For example, 
students might propose that the expression x18 (where the 18 represents any even integer) 
could be viewed as (x2)9, and thus that (x18 – 1), which is equivalent to ((x2)9 – 1), could 
be factored according to the general rule for (x9 – 1), but with the x being replaced by x2. 
As mentioned earlier, the students of Michael’s class had not had any prior experience 
with proving in algebra. Such lack of experience with proving is not unusual for students 
of this age. This is reflected in the general absence of algebraic proving activity among 
high school students in the research literature. Nevertheless, some attention has been 
given to number-theoretic proofs (e.g., Healy & Hoyles, 2000; see also Mariotti, 2006), 
as well as to proofs involving geometric figures (Balacheff, 1988). However, we could 
find nothing that was closely related to algebraic proofs of the kind being proposed 
within our xn – 1 task. Mounier and Aldon’s (1996) report, which had stated that students 
generated four proofs for various factorizations of xn – 1 where n is a positive integer, did 
not describe the actual activity of proving nor provide the steps of the students’ proofs.  
 
To return now to our observations of the unfolding of the proving activity in Michael’s 
class, the students worked on this part of the task, mostly within small groups, for about 
15 minutes. Some were using their CAS calculators, but most were just talking about how 
they might approach the task and occasionally jotting things down on paper. During that 
time, the teacher circulated and was heard to offer the following remarks to various 
groups (T = Teacher): 
 
T: See if you can prove this and not just state it, as some people have done so far (picking 

up one student’s worksheet and reading it to the class):  ‘When n is greater than or 
equal to 2, (x+1) is a factor because.’ Let’s see if we can go a little bit beyond that. 
Can you write down what you come up with. ... Yeah, but you need more than just 
examples. … You need to get something written down. … Look, you need to think in 
order to answer this. This is the only hint I’m giving you, you need to think about 
where the (x+1) comes from.  

 
Getting students into this proving task was not straightforward, as they had never before 
engaged in such mathematical activity. However, with the teacher’s encouragement, they 
did make progress. When he sensed that the majority of them had arrived at some form of 
a proof, he opened up a whole-class discussion, oriented around various students’ sharing 
their work: 
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T: Ok, guys. Quite a lot of you got quite close in doing this. What I want you to do, and 

I’ve asked a couple of people who’ve done it in completely different ways, to see if 
they can put forward their explanation. I want you to be quiet, listen to their 
explanation, then we’ll discuss it once they’ve got it done, once they’ve completed 
their little spiel, ok. 

  
He invited selected students to come to the board, one at a time. As will be seen, the 
principal contributions of the students can be grouped into three distinct approaches. The 
first proof, which is presented immediately below, revolves around the idea of ‘difference 
of squares’. Despite a follow-up counterexample involving the ‘sum of cubes’, and a 
return to the validity of the notion of ‘difference of squares’, the proof-giver never quite 
fills in the gaps to arrive at a full proof.  
 
Proof 1: A general approach based on the difference of squares. Paul was 
invited to come to the front and to present his ‘proof’: 
 
Paul: Ok. So, my theory is that whenever xn-1 has an even value for n, if it’s greater or 

equal to 2, that, one of the factors of that would be x2-1, and since x2-1 is always a 
factor of one of those, a factor of x2-1 is (x+1), so then (x+1) is always a factor. 

S2: Could you say it again? [other students react all at once, making many comments] 
S3: Why don’t you write it on the board? 
T: Guys! Give him a chance.  
Paul: You want me to write? [addressing the teacher] 
T: Write down what you want to write down. 
S4: Can you talk at the same time? 
 
Paul then proceeded to write down at the board that which he had just stated orally. The 
teacher then asked: “Is everyone willing to accept his explanation?” While many seemed 
to agree with what Paul had proposed, a few voiced disagreement – to which the teacher 
responded: “Ok, guys, one at a time. Ok, start with Dan.” 
 
A proposed counterexample involving the sum of cubes. Dan then came forward 
with what he considered a counterexample, 

 

x12 !1, to Paul’s proof. Dan proceeded by 
factoring 

 

x12 !1 as 

 

(x6 +1)(x6 !1) , the latter of which he refactored as 

 

(x3 +1)(x3 !1) . His 
subsequent factoring of 

 

(x3 +1)  – a sum of cubes – yielded the sought-for (x+1) factor (see 
Figure 5). Thus, he maintained that the presence of 

 

x 2 !1 was not necessary for a proof 
because he (Dan) had shown that, for even values of n, the factoring of xn – 1 does not have 
to end up with a difference of squares. A sum of cubes could result, and it too would yield 
a factor of (x+1). This led immediately to many students’ voicing disagreement, to which 
the teacher remarked:  
 
T: Ok, so, so this is good [he points to the third line on the board, which contains  

(x3-1)(x3+1)(x6+1)]. This is good because, Paul, the problem I had with yours, is how 
do you get from here to here [he points to xn-1 and then to the x2-1 of Paul’s board 
work; he then draws a red arrow to highlight the gap between those two lines of the 
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proof], does that follow? He’s just given you a counterexample where it does not 
follow.  

Some Students: It does though [with many students speaking at once]. 
 
The counterproposal containing seeds of a generic proof. Many of the other 
students, including Paul, contended that Dan’s was not a counterexample, after all. They 
argued that the expression 

 

x12 !1 could, in fact, produce x2 – 1 if it were factored 
differently: 
 
Paul: Isn’t x6+1 a sum of cubes? … So couldn’t you also do the x6-1 as the difference of 

cubes [one student says “yeah”] and that’s x2-1. 
T: [he circles (x6-1) in red and draws an arrow on the left to show the alternate 

factorization being proposed. See the leftmost arrow and its accompanying 
factorization in Figure 5] 

Paul: [continuing what he was saying] So x2-1 times whatever [the teacher writes  
(x2-1)(x4+x2+1) on the board]. So there’s your x2-1.  

S5 (a student other than Paul): Even though it’s not fully factored [referring to x12 – 1], 
x2-1 is still a factor of that. 

Paul: Sir, it can be factored down 
T: Yeah I know it can be factored down, and I am not saying you’re wrong, what I’m 

saying is that your reasoning to get from xn-1 down to this [he points to the x2-1 line of 
Paul’s proof] is not complete. Do you agree (to Paul)?  

 
 

 
Figure 5. Dan’s counterexample in the central section, with the counterproposal by Paul  

that x6-1 does indeed yield x2-1 (at the leftmost arrow) 
 

 
Analysis of Proof 1. While Paul had seen that x6 – 1 could be viewed as a difference of 
cubes, and thus that x2 – 1 was a factor, he did not seem able to link this particular 
example with his general affirmation that for all even ns in xn – 1, one would always 
arrive at x2 – 1 as a factor. Yet, he was unbelievably close. Could he see that x6 – 1 was 
equivalent to ((x2)3 – 1), even if he had never expressed it in quite this way? Or was his 
realization based solely on his experience with factoring the ‘difference of cubes’ and 
merely with perceiving 6 as a multiple of 2 and of 3? If the former, why not see also that 
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x8 – 1 was equivalent to ((x2)4 – 1), … , and more generally that xn – 1 for even ns could 
be expressed as ((x2)p – 1) where n = 2p? And so if xn – 1 has (x-1) as its first factor, why 
not then see that, similarly, ((x2)p – 1) would have x2 – 1 as its first factor, and thus (x+1) 
as a factor? While Paul had certainly intuited some of this in offering his initial proof, the 
connections were likely still quite tentative and not yet able to be formulated in an 
explicit way. However, the teacher, Michael, had insisted that, for Paul’s proof to be 
complete, there needed to be a theoretical link connecting the two main lines of the proof 
(the xn – 1 line and the x2 – 1 line): “Yes, we know we will get there eventually, but how 
do we know that we will eventually get there without doing all the actual factoring?” 
Paul’s proof had a ‘gap’ in it (see Weber & Alcock, 2005, for more on ‘gaps’).      
 
Proof 2: A proof involving factoring by grouping. The second approach to the 
proving problem was put forward by Janet. Janet’s proof, which she and her partner 
Alexandra had together generated, was based on their earlier work on reconciling CAS 
factors with their paper-and-pencil factoring (for the tasks shown in Figure 2). They had 
noticed that for even 

 

ns, the number of terms in the second factor was always even. Janet 
argued, as she presented the proof at the board using 

 

x 8 !1 as an example, that it would 
work for any even n: 
 
Janet: When n is an even number 
T: Write it on the board, show it on the board. 
Janet: [she writes “x8-1” and below it: (x-1)(x7+x6+x5+x4+x3+x2+x+1)] 
T: Ok, listen ‘cause this is interesting [addressed to the rest of the class], it’s a completely 

different way of looking at it, to what most of you guys did. Ok, so explain it, Janet. 
Janet: When n is an even number [she points to the 8 in the x8-1 that she has written], the 

number of terms in this bracket is even, which means they can be grouped and a factor 
is always (x+1).  

T: Can you show that? 
Janet: [she groups the second factor as follows, x6(x+1)+x4(x+1)+x2(x+1)+1(x+1)] 
T: Thanks Janet. Do we understand what she put out there? 
 
A student’s query related to the factor (x+1). As soon as Janet had finished the 
writing of her proof at the board, another student posed a rather insightful question: “But 
how do you know that the group is going to be (x+1)?” As no student could offer any 
response to this, the teacher Michael interjected with a general notation for Janet’s proof, 
in the hope that this might perhaps help the questioner to see the logical necessity of the 
(x+1) factor (It is noted that Michael remarked to us during the classroom observations 
that Janet’s proof was one that he had not thought of before; yet, he was able to react 
quickly with a general formulation in response to the ‘(x+1)’ question.): 
  
T: You know it’s going to be xn-1 plus xn-2 plus dot, dot, dot, plus x plus 1 [he writes on 

the board as he speaks] and you know there’s an even number here yeah? [he points to 
the series of dots in the polynomial]. Yes? So you know that, in there, if we take this 
[he points to the xn-2] as the term outside. You know that these two [he points to xn-1 
and xn-2] can be factored and it’s just (x+1) as the other factor of these two [he wrote 
xn-2(x+1)], yeah? And that would be the case for any and all in between [he points to 
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the series of dots], and including this [he points to the ‘+ x + 1’ at the end of the 
sequence and writes 1(x+1) on the far right of the xn-2(x+1) that he had already written; 
see Figure 6].  

 

 
Figure 6. A general notation illustrating that (x+1) will be a factor upon grouping 

 
Analysis of Proof 2. Janet’s proof, which was generic in that it embodied the structure 
of a more general argument and was a representative of all similar objects (Balacheff, 
1988; Bergqvist, 2005), was one that seemed to be understood and appreciated by most of 
the students in the class (see Weber, 2008, for related discussion). It also provided insight 
as to why the proposition holds true not only for that single instance but for all related 
cases (Rowland, 2002). Janet had been able to explain how the terms of the second factor 
(the factor beginning with the x7 term) could be grouped pair-wise, yielding a common 
factor of 

 

(x +1) , even if she did not complete the factoring process: 

 

x 8 !1  = 

 

(x !1)(x 7 + x 6 + x 5 + x 4 + x 3 + x 2 + x +1) 
    = 

 

(x !1) x 6(x +1) + x 4 (x +1) + x 2(x +1) +1(x +1)[ ] 
    = 

 

(x !1)(x +1)(x 6 + x 4 + x 2 +1) 
    = 

 

(x !1)(x +1)(x 2 +1) x 4 +1( )  
 
Janet’s proof had appealed to her classmates’ common experience in factoring by 
grouping. But, as has been discussed by Balacheff (1987), generic proofs such as these 
may often use rather imprecise tools and be defective in certain respects – as was, for 
example, pointed out by her classmate’s question as to how Janet knew that (x+1) would 
appear in the grouping, or the unposed question as to how she knew that there would 
always be an even number of terms in the second factor of the first line of her proof. 
Nevertheless, it was a clever proof with a degree of elegance that indicated to the teacher, 
Michael, that his students could go much farther in the activity of proving than he had 
initially thought possible (compare with Bergqvist, 2005, where teachers were reported to 
believe that only a small number of students can use higher level reasoning).  
 
Proof 3. A new conjecture involving xn + 1 where n is an odd integer. When 
Paul had presented his proof to the class, the implicit underlying argument was that when 
one begins with xn – 1 where n is an even integer, and if one continually takes the even 
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exponent and treats it as a difference of squares, then one eventually arrives at x2 – 1. 
Shortly after Janet had finished explaining her proof, the issue of Paul’s proof came up 
once more. To provoke the students, the teacher offered the following counterexample: 
“Just out of interest, what would happen if this was x14 – 1? [he wrote (x14 – 1) under the 
(xn – 1)], to which a student easily responded: “(x7-1) times (x7+1).” The teacher wrote at 
the board (x14 – 1) = (x7-1)(x7+1) and then wondered aloud: “Where does that leave your 
proof, Paul?” However, rather than leaving the class stymied, this question provided an 
opening for another student who had been conjecturing something new:  
  
Andrew: See, when it’s a prime number, then the first part here is x+1 as a factor. … 

From, like x5+1 you get, x4-x3+x2-x+1, like when you factor it on the calculator, that’s 
what you get. 

T: Ok. 
Andrew: x+1 times x4-x3+x2-x+1. 
T: Say it again Andrew [he is ready to write down Andrew’s verbalizings at the board] 
Andrew: When you factor x10-1 on the calculator, you get (x-1) times (x+1) times 

(x4+x3+x2+x+1) times (x4-x3+x2-x+1). 
T: Yeah [while completing the writing of Andrew’s factorization at the board]. So, just 

go back a bit. That was these two together [tracing an arc joining (x-1) and 
(x4+x3+x2+x+1)] to give you the x5 -1. 

Andrew: Yeah, and the next two would be (x+1) and (x4-x3+x2-x+1) [See Figure 7]. 
T: So you’re going into something that we haven’t looked at in this class. You’re setting 

up another hypothesis. What is your hypothesis? 
Andrew: Well, that’s what I was trying to get at. … If the division by 2 gives an odd 

number, then it goes (x+1). 
T: So you’re saying that, for the second hypothesis, something like this [he writes down 

(x5+1)=(x+1)(x4-x3+x2-x+1), just as the bell rang]. And you’re saying that’s true for all 
odd numbers? 

Andrew: That’s what I think. 
T: So if we could prove this, then we’ve got it. But we’ve run out of time. 
 
 

 
Figure 7. Moving toward a conjecture involving xn+1 for odd ns 

 
Analysis of Proof 3. When Andrew had been working earlier on the second part of the 
xn – 1 task, which had involved the reconciling of his paper-and-pencil factoring with the 
CAS factoring, the 

 

x10 !1 example had presented a surprise. He had first factored it with 
pencil and paper as 

 

(x5 +1)(x5 !1) , and then refactored the 

 

(x5 !1) according to the 



11 

newly-learned general rule, but had left the (x5+1) factor as is. But the CAS produced as 
its factored form for 

 

x10 !1: 

 

(x !1)(x +1)(x 4 + x3 + x2 + x +1)(x 4 ! x 3 + x 2 ! x +1) . 
Andrew noticed this additional factoring by the CAS, that is, that 

 

x 5 +1 = 

 

(x +1)(x4 ! x3 + x2 ! x +1) . So, he began to conjecture and test the more general rule: 
 

 

x n +1= (x +1)(xn!1 ! x n!2 + ...! x +1) , when n is odd. 
 
It is interesting that, as Andrew was explaining his conjecture to the teacher, it was 
clearly a new idea for the teacher too. While Andrew’s conjectured new rule did not 
address the gap in Paul’s proof, it did provide a worthy response to the teacher’s (x14 – 1) 
counterexample: that is, that it did not matter if the ‘difference of squares’ approach led 
to exponents that were odd integers, by taking the ‘plus’ factor (e.g., x7+1), one would 
still end up with a factor of (x+1)!  
 
A few remarks regarding the proving part of the activity. Keeping in mind that 
the proving attempts that we have just witnessed were generated by 15- and 16-year-olds 
with no prior experience in algebraic-type proofs, their work is indeed remarkable. Hanna 
(2005) points out that, “While in mathematical practice the main function of proof is 
justification and verification, its main function in mathematics education is surely that of 
explanation” (p. 47). She adds that, “A good proof, however, must not only be correct 
and explanatory, it must also take into account, especially in its level of detail, the 
classroom context and the experience of the students” (p. 48). While the explanatory 
power of Janet’s and Andrew’s proofs was in a sense stronger than that of Paul’s, even 
his had the seeds of a powerful explanation. 
 
How might we account for the richness of the students’ work with respect to proving? 
Mariotti (2002) has argued that there is no proof without theory. In the same vein, 
Mariotti and Balacheff (2008) have emphasized that the proving process as a complete 
whole necessarily starts with the production of conjectures before moving on to proof. In 
this regard, it is noted that the entire two-lesson sequence that was devoted to the xn – 1 
task involved an interplay between theory and technique. Such is the backbone of all the 
task activities developed within the present project. For the given task, the development 
of student conjectures was requested right from the second question in the first part (see 
Figure 1). Further conjecturing that was more explicitly related to the proving task was 
also called for in the second part of the activity (see Figure 3). Thus, the ideas that the 
students generated during the proving task were those that they had been conjecturing 
about and playing with throughout the entire activity.    
 
The findings of this study contrast with some of the prior work on proof and justification 
that has been reported in the literature. For example, Healy and Hoyles (2000) found 
from their study of 14- and 15-year-olds’ conceptions of proving within the number-
theoretic domain that students were more likely to prefer empirical to algebraic 
arguments: “Regarding explanatory power, arguments that incorporated algebra were 
most likely to be viewed neither as showing why the given statement was true nor as 
representing an easy way to explain to someone who was unsure” (p. 414), … students 
were put off from using algebra because it offered them little in the way of explanation; 
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they were uncomfortable with algebraic arguments and found them hard to follow” (p. 
415). These findings of Healy and Hoyles are consistent with the results of Lee and 
Wheeler (1987) who found that high school students preferred numerical examples to 
algebraic proofs and did not view algebra as a tool for justification and proof.    
 
So why were the students of our study so impressed with the explanatory power of the 
algebraic proofs generated by themselves and their peers? There are a couple of major 
differences between the kind of proving tasks used in the two studies referred to above 
and the task used in this study, differences that can explain the divergence in the findings. 
First, as already pointed out above, the xn – 1 task had built into it a great deal of prior 
conjecturing activity that was related to the ideas that were integral to the proving part of 
the task. This is in contrast to the proving tasks used in the Healy and Hoyles survey that 
were not preceded by prior student activity in developing related conceptual ideas. 
Students of the Healy and Hoyles study were confronted with the survey instrument ‘out 
of the blue’, so to speak. Second, and this is a critical difference, the Healy and Hoyles 
problems presented students with statements, such as, “When you add 2 even numbers, 
your answer is always even”, followed by choices of proof responses that included 
numerical, algebraic, and pictorial approaches. That students tended to choose numerical 
justifications as being more convincing is not surprising, given the numerical aspect of 
the initial problem statement. However, the xn – 1 task is not a task that suggests 
numerical exemplification as does the above number-theoretic task. Furthermore, most of 
the tasks in the Healy and Hoyles study were presented to the students in a verbal rather 
than an algebraic form, the latter of which was the case in our study and which may have 
induced students to embrace an algebraic form of proof. In fact, the proving activity of 
the xn – 1 task did not evoke the usual dialectic between the numerical and the algebraic – 
as is often the case in algebraic activity – but rather a higher-level dialectic between 
specific algebraic examples (e.g., x2 – 1) and more general algebraic formulations  
(e.g., xn – 1). The students in the current study remained at an algebraic level throughout – 
one that had been supported by a great deal of prior work involving related conjecturing. 
 
Hanna and Barbeau (2008) have advanced the notion that, “Proofs yield new 
mathematical insights, new contextual links and new methods for solving problems, 
giving them a value far beyond establishing the truth of propositions” (p. 346). We would 
add, in closing this section and in introducing the next, that these new mathematical 
insights were found in our study to flow both in the direction of the proof-giver and in the 
direction of the proof-receiver – the proof-receivers being both students and teacher. 
 
The Subsequent Interview with Michael 
 
The 35-minute interview with Michael took place at the close of the proving activity. It 
inquired into a range of issues related to his views on the research project, as well as his 
impressions of the most recent activity involving the xn – 1 task. The main thrust of his 
reflections, which are captured in the following verbatim extracts, focus first on his initial 
expectations, then on his changed views after having experienced a few months of 
classroom activity with the project tasks and CAS technology, and finally on related 
future plans.  
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His initial expectations – Extract 1. 
Interviewer: Did you have any expectations or apprehensions about the proposed use of 

symbolic calculators in your math class before this project started? 
Michael: Hmh, I guess I wasn’t sure how it was going to go; I was apprehensive to some 

degree. I was a little bit concerned about how the students would take to it and 
whether they would see it as being dragged away from what they needed to do. I was 
a little bit worried about how the parents would take it, but that’s been no issue at all. 
In parent-teacher interviews, a lot of them said they were quite pleased that we’re 
doing some of these things and pushing the kids a little bit further. My feeling about 
the project itself was that we had enough time to do it, so it couldn’t be bad. I’d 
figured you guys had put some thought into what you were doing and there was a 
good chance that it was going to be successful and to help them a little. I don’t know 
if my expectations were that huge, but I was hoping there would be something there. 

 
His changed views – Extract 2. 
Interviewer: Do you now see this technology as playing a different role in your class from 

the time before the project started? 
Michael: Yes, for sure, because before the project started, like I said, I hoped it would be 

good, but my expectations were not that high about it. I certainly have been very 
pleasantly surprised with what’s happened and I don’t think I would have considered 
when we did this in June last year – when we went for the training days – I don’t 
think I would have considered that I would be at this stage. I didn’t think I would 
have been in a situation where I’d be saying to you: “I want to use this again next 
year.” I don’t think that those were my expectations, I thought it would be ok and 
kind of fun, and a nice diversion, but I didn’t think we would be quite at the level 
that we are. I guess my expectations were a lot lower than what we’ve achieved. 

 
Brief commentary on Extracts 1 and 2. Michael had not had high expectations at the 
outset of the project. This makes the results all that much more interesting and 
persuasive. Some mathematics educators have been heard to express some reservation 
regarding the role that technology can play in the learning of mathematics, a few even 
suggesting that it is the already-converted with their ‘rose-tinted glasses’ who are 
technology’s greatest proponents. Yet, here we have a teacher who was not already 
‘converted’ at the start of the project and who, as the project progressed, became highly 
impressed with the way in which the technology was serving to enrich the mathematical 
learning of his students.      
 
The tasks and the technology – Extract 3. 
Interviewer: If I were to ask you to describe what you think has been the impact on the 

students of this project both mathematically speaking and technologically speaking, 
how would you describe this impact? 

Michael: I think the biggest impact, and the thing I’ve been most happy with is the way 
you guys have designed the activities. It’s the way that we’ve challenged their [the 
students’] thinking and actually made them think about a process that maybe they 
knew how to do, but made them think about why they’re doing it that way. And I think 
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that’s what the calculator has helped them to do and helped them to really, really look 
at whether they understand the material – basically the meta-cognition kind of idea of 
thinking about the process you’re going through yourself, the thinking you’re going 
through. That’s something we don’t do enough of in mathematics, I think we should 
do and I really like to do it. So in a mathematical sense I would say that’s been the 
biggest thing. … The learning through the technology was amazing. But it’s the 
amount of work that you put into these activities, and that’s why they were so 
successful. The technology is nothing by itself. That’s why it’s been such a pleasure to 
do this and why I have really enjoyed it – it’s because you people clearly know what 
you’re doing and have spent a lot of time organizing these. Like you said, we [the 
teachers] were involved, but only to a small extent. And it’s been really good to see 
how the kids have developed with these [the tasks] and worked with them.   

 
Change in his teaching – Extract 4. 
Interviewer: Has this project affected your style of teaching in any way? 
Michael: [shy-laughing] I don’t know. I think it’s made me think more, or made me 

realize that what I like is making them think a little bit more. And I think I did that 
anyway, I remember when you came into class last year that there were some things 
similar happening, but it just made me, just consider a little bit more: Can I let them 
come through this themselves, let them try this out themselves a little bit more, which 
I think I always did – but just seeing these activities work, it’s made me realize there’s 
more scope to it than I have done in previous years. There is much more scope to let 
them really go and really know the material properly. So, [to answer your question] I 
think so, a little bit. 

 
Pushing students to go farther mathematically – Extract 5. 
Interviewer: Has the project altered your view of the nature of the mathematics content 

that can be taught at this level? 
Michael: Yes. Because some of the things that you had in those activities I wouldn’t have 

touched. Such as, especially the last activity [the xn – 1 task set], you know there’s no 
way I would have gone anywhere with that. It was way beyond anything that they 
need to know, but just doing that activity was such a fulfilling experience for, not just 
for me, I spoke with some of the kids afterwards, and they really enjoyed it. They 
really did! Just going way beyond what they needed to do [in the math program for 
that grade level] and they were all able to do it. The really nice thing about that 
activity is that, at the end of it, everyone had something. Even if they didn’t all have as 
nice a little proof as Janet and Alexandra, all of them had worked someway along the 
lines to get to something. So, so yeah, it certainly opens up things and they couldn’t 
have done that without the technology. So, so for sure is the answer to your question. 

 
Brief commentary on Extracts 3, 4, and 5. While the CAS technology was deemed by 
Michael to be essential to the changed nature of his students’ mathematical learning, he 
was quick to point to the role played by the task activities. He emphasized that the 
technology by itself would not have produced that which he and his students experienced 
in this new learning environment. It was the tasks and the way in which they pushed 
students beyond what is normally asked of them in their mathematics program that 
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seemed crucial. The task sheets included questions that were not only different, and also 
rich and challenging extensions of that with which they were already somewhat familiar, 
but which proved to be quite feasible because of the presence of the CAS technology. In 
addition, the content of the tasks provided Michael with the grist needed to pose 
additional questions and to encourage his students to think hard about difficult ideas. The 
intertwining of novel and substantive mathematical tasks, and technological tools 
appropriate for these tasks, led to mathematical activity that the students quite enjoyed 
and from which they learned a great deal. This, in turn, promoted the development of new 
awarenesses on the part of the teacher, awarenesses that will be discussed shortly.         
 
Using technology to increase student involvement and promote learning – 

Extract 6. 
Michael: With this technology, the learning is not the same [as with my teaching at the 

board]. Learning goes much further, it is much more involved. That’s why I have 
really, really enjoyed it. Normally, I’d be involving about two or three of them, but not 
the entire class. With this tool, it gives them the extra level of ability, and it involves 
more students. It gets them into it a lot more.  

Interviewer: You mentioned that the technology in combination with the activities made 
them think a lot more about their mathematics, and some of the different steps in the 
process. What if they hadn’t had the technology, could you have seen or imagined that 
the same sort of progress would take place with similar activities but not incorporating 
technology? 

Michael: I guess with some of the activities it would have been possible, but I think with 
some of them it would have been either impossible or very, very fake ‘cause you’d 
have to give them answers anyway, you’d have to give them results from the 
calculator. If you take the last activity, the activity 6 [the xn – 1 task] that we did. The 
only way you could have done that without the technology would have been to give 
them what the calculator gave them itself. So then it becomes less hands-on, they don’t 
get into it as much. The fact that they derived these things and went through the 
process of “there it is [gesturing to the right to suggest a paper-and-pencil result], 
that’s what the calculator gave [gesturing to the left – emulating a comparison], how 
do I reconcile the difference, how do I factor this, how do I do it?” I think that without 
the technology it would be so artificial that it would lose them. And basically, you 
would have had to use the technology at some level anyway to give you the answers, 
so the fact that they could discover things themselves is a valuable effect. 

 
Future plans – Extract 7. 
Interviewer: Do you see yourself using this technology and these activities perhaps next 

year in the same class? 
Michael: I was actually saying to David [his colleague and department chair] that I fully 

intend using them. You know that our school is in the process of moving toward 
laptops and it’s interesting that when you do that, there is a lot of what I would call – 
to use a derogatory term – ‘fluff’ to it: “ok, that’s a nice powerpoint, that’s a nice little 
internet site to look at this, or you can use a smart board and you can highlight this and 
that looks really pretty.” So, when I asked you for the DVD of the class lessons on the 
xn – 1 task, the reason why I asked for it is that I want to show people [my colleagues] 
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what can actually be done. Even when we were not actually using the technology all 
the time [in class], the learning through the technology was huge. 

 
Brief commentary on Extracts 6 and 7. In orchestrating his classroom teaching, 
Michael did not always use the technological artefact of the classroom view-screen 
hooked up to a TI-92 CAS calculator. Yet, he was firmly convinced that the “learning 
through the technology was huge.” Not only did it allow the students to go farther 
mathematically, it encouraged them to be more active and more involved participants in 
the process of learning. Michael’s impressions of the project activity were so favourable, 
in fact, that he wanted to continue using the tasks and the technology the following year; 
he also wanted to share the video of the lessons of the last two classes on the xn – 1 task 
with his colleagues, just so that they could see what is possible with this technology and 
with the kinds of tasks that were developed within the project. 
 
The above interview-highlights are now analyzed in the light of what we observed during 
the two classes, with a view to focusing more particularly on the teacher and his learning. 

 
ANALYSIS AND DISCUSSION 

 
As stated by Michael, it was his participation in the research project, a project involving 
tasks and technologies that were new to him, that led to new awarenesses regarding his 
practice of teaching algebra. From an analysis of the two observed lessons in conjunction 
with the follow-up interview, we too became aware of the changes that had occurred in 
Michael. This section focuses first on what changed in Michael and, second, on what 
enabled those changes. 
 
What Changed in Michael 
 
Zaslavsky and Leikin (2004) have pointed out that, by observing their students’ work and 
by reflecting on this work, teachers learn through their teaching. We have found this to be 
the case for Michael as well. In particular, Michael’s learning was in three areas: his 
knowledge of mathematics, his knowledge of mathematics teaching and learning, and his 
practice of teaching.  
 
His knowledge of mathematics. Before his participation in the project, Michael had 
never really had the opportunity to think about a general rule for factoring the family of 
polynomials of the form xn – 1. The prior workshop sessions between the members of the 
research team and the participating teachers had included discussions on this task and on 
one of the ways that its proving component might be thought about. However, the 
mathematics that Michael learned from engaging in the two class lessons on this task 
went beyond that which he had learned during the workshop. It involved specifically 
certain ways to approach the proof problem; moreover, this new learning on Michael’s 
part was provoked by the students themselves. 
 
The proof produced by Janet and Alexandra, which involved factoring by grouping with 
the generic example for n = 8, was one that had not occurred to Michael before his 
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students actually generated it. He found it a ‘nice little proof’, to use his own words. A 
second contribution to the mathematical learning of Michael was occasioned by the 
proving attempt of Andrew. While Andrew was describing what he had observed for the 
CAS factoring of x10 – 1, it became clear that not only was this an interesting finding for 
his classmates, but also for the teacher, Michael. The new pattern that Andrew had 
noticed regarding the factoring of x5+1 as (x+1)(x4-x3+x2-x+1) paralleled the pattern that 
he had noticed earlier regarding x3+1 as (x+1)(x2-x+1). Although time did not allow for 
the proving of his conjectured new rule nor for its integration into the previous proofs that 
had been put forward during that lesson, there was no doubt that this was a new piece of 
mathematics for Michael. 
 
His knowledge of mathematics teaching and learning. As reported by Zaslavsky 
and Leikin (2004), teachers’ engaging in learning activities designed for student 
mathematical learning can be an effective vehicle for their professional growth. An 
additional factor that has been emphasized by Mason (1998) is that it is one’s developing 
awareness in actual teaching practice that constitutes change in one’s ‘knowledge’ of 
mathematics teaching and learning. Although Michael did participate in our professional 
development workshop prior to his integrating the novel tasks and technology into his 
teaching, it was his actual practice with these materials that had the greater impact 
regarding his ‘developing awarenesses’ in the area of mathematics teaching and learning. 
We focus on five of these new awarenesses. 
 
* Michael developed a new awareness of what students at this grade level can accomplish 
mathematically – given appropriate tasks – as well as the realization that they can go 
further mathematically than expected (Extracts 4 and 5).  
 
* Michael developed a new awareness of the role that technology can play in the 
mathematical learning of students (Extracts 5, 6, and 7).  
 
* Michael developed a new awareness that students’ mathematical knowledge changes 
with the combined duo of ‘task-technology’ (Extract 3).  
 
* Michael developed a new awareness of how he might further provoke mathematical 
reflection in students; that is, that he could go even further than he usually went in his 
questioning, given appropriate tasks (Extract 4).  
 
* Michael developed a new awareness regarding the culture of the class: it changes when 
technology is present and is used in the classroom. Students become more involved; they 
are more autonomous (Extract 6). 
 
His practice in succeeding mathematics classes. It was not only Michael’s 
awarenesses, which developed during this project. These new awarenesses were 
translated into practice. As he had said during his interview, he fully intended to take 
advantage of the wider scope offered by the project tasks and technology and to use them 
in subsequent years to push his students into thinking more deeply about their 
mathematics (Extracts 2 and 4). We continued to observe several of Michael’s classes 
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during the two years following this study. We witnessed, just as he had hinted he would 
do, a continuing development of his approach to encouraging students to go a little 
further in their thinking. This reflected his realization, which he stated during the 
interview, that he could push his students to think a little bit more about their 
mathematics. In addition, we also observed that he never stopped using the tasks and 
CAS technology that he mentioned he had so much enjoyed using during the present 
study. Thus, we were able to note a further evolution in his teaching practice – a practice 
characterized by the newly-acquired awareness of the role that technology, when 
accompanied by appropriate tasks, can play in the development of students’ mathematical 
learning. Regular conversations with him during the ensuing years, including one quite 
recently, have highlighted his and his students’ successes with, in particular, the xn – 1 
task with its proving component.  
 
What Enabled These Changes 

 
We can point to several factors that enabled the changes that we observed, as well as 
those that were disclosed to us by Michael himself. These enabling factors were found to 
include the following: a) Access to the resources and support offered by the research 
group; b) Use of CAS-supported tasks whose mathematical content differed from that 
usually touched upon in class; c) Michael’s disposition toward student reflection and 
student learning of mathematics; d) The quality of the reflections of his own students on 
these tasks; e) Michael’s attitude with respect to his own learning. The first two factors 
relate principally to the role played by resources ‘from without’, while the remaining 
three could be said to be ‘from within’ in that they concern the given teacher and his 
students. However, as will be argued, it is the interaction of the two dimensions that 
promoted teacher change.  
 
Access to the resources and support offered by the research group. As was 
noted above, the change in Michael’s knowledge of mathematics was occasioned by two 
different, but related, experiences. The first of these involved his prior discussions with 
members of the research group. These discussions had focused on new tasks and thus 
new mathematical awarenesses, which thereby constituted a first round of change with 
respect to Michael’s existing mathematical knowledge. While the ideas for, and initial 
design of, the tasks came from the research group, these were shared with the 
participating teachers in a workshop setting that involved their working on the tasks 
themselves. They were then invited to offer feedback and to suggest changes to the tasks. 
These changes were subsequently integrated into a modified design for the tasks. Thus, 
the first exposure to the mathematical ideas inherent in the tasks occurred during the 
workshops that preceded the integration of the tasks into the teachers’ classroom lessons. 
It was at these workshop sessions that Michael initially encountered the mathematics of 
the xn – 1 task. This was also his first introduction to the use of CAS technology. 
 
As the project unfolded and the researchers became a regular presence in Michael’s class, 
there was ample opportunity to provide ongoing support to Michael. The researchers 
were able to offer assistance of a pedagogical, mathematical, and technical nature, 
whenever Michael so desired. In actual fact, such requests for support were quite rare, as 
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each of the tasks was accompanied by a teacher version that included suggestions 
regarding discussion ideas, as well as additional information of both a mathematical and 
didactical sort. The normal interaction between Michael and the researchers after each 
lesson tended to be informal and conversational, much like that between collaborators. 
 
Use of CAS-supported tasks whose mathematical content differed from that 
usually touched upon in class. Michael had expressed the fact that the xn – 1 task with 
its exploration of the factors of this family of polynomials for integer values of n, along 
with its proving component, was a type of task that went far beyond what the students 
‘needed to know.’ (It was also a new type of task for him.) While he might never have 
presented such a task to his students in the past, the experience of doing so convinced him 
that such tasks are indeed not only feasible, but also enjoyable to the students and lead to 
deeper mathematical reflection on their part (Extract 5). Based on our observations, we 
contend that novel tasks such as this one can change in a positive manner the usual 
teaching-learning dialectic of the mathematics classroom and are at the heart of both 
student and teacher learning. 
 
Watson and Mason (2007) have argued that, “factors which influence the effectiveness of 
a task in promoting the intended kind of activity include … established practices and 
ways of working; students’ expectations of themselves and of each other as influenced by 
the system and their pasts …” (p. 207). While ‘novel tasks’ may in fact be part of some 
teachers’ “established practices and ways of working,” we think rather that novel tasks – 
especially those involving proofs – in which algebra students have never before engaged, 
are likely the exception and not usually the norm. The very absence of “established 
practices” or student “expectations” may, in fact, lead to the success of novel tasks, and 
thus to some nuancing of Watson and Mason’s statement.  
 
Michael’s disposition toward student reflection and student learning of 
mathematics. Michael worked very hard at encouraging his students to reflect, at giving 
them time to reflect, at listening closely to their reflections, and at having them share their 
reflections with the rest of the class. Even if he expressed the realization that, with the 
help of the activities designed by the research group, he could do even more in this 
regard, he was already predisposed to such practice. This predisposition was of course 
related to the importance Michael ascribed to students’ learning to think for themselves. 
One of the signs of this didactical stance on mathematical learning was the way in which 
he often presented counterexamples to challenge students’ thinking rather than 
immediately correcting them or giving the right answer. He aimed at having students 
develop their mathematical reasoning and critical thinking. 
  
In her study of one teacher’s practice of listening and responding to students’ solution 
strategies, Doerr (2006) found that, “as the teacher asked for students to describe and 
explain their thinking, this not only contributed to the teacher’s understanding of their 
thinking, but it created a situation where the students could refine their thinking and shift 
to a new way of thinking about the problem” (p. 20). As the case of Michael suggests, not 
only does listening to students support the development of students’ thinking, it also leads 
to new awarenesses and professional growth in the teacher. Had Michael been a teacher 
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who did not encourage the voicing of his students’ mathematical ideas, he would hardly 
have come to know that, “their learning through the technology was huge” (Extract 7), 
nor would he have realized the pedagogical role that technological tools can play in 
enhancing mathematical learning. Thus, as Leikin and Levav-Waynberg (2007) have 
pointed out, a teacher’s pedagogical principles can provide support for the growth of 
his/her knowledge regarding not only student learning but also teacher learning. In fact, 
Michael’s pedagogical disposition with regard to mathematical activity (i.e., his view on 
encouraging the voicing of student reflection) served to beget not only new pedagogical 
knowledge regarding mathematics teaching and learning but also new mathematical 
knowledge for him.  
 
The quality of the reflections of his own students on these tasks. During the 
interview, Michael mentioned on several occasions how struck he was by the quality of 
the mathematical contributions of his students, contributions such as those by Janet and 
Andrew, which had evoked new mathematical insights within Michael, as well as within 
the students of his class. He was clearly a teacher who could learn from his students, just 
as did the teachers in the Leikin and Levav-Waynberg (2007) study; these researchers 
reported that, “teachers who are sensitive to their students and flexible in their 
interactions with them, and who grant students autonomy in learning, end up learning 
mathematics from their students’ replies” (p. 366). 
 
In addition to Michael’s development of mathematical knowledge from his interactions 
with his students, so too was the development of his knowledge of mathematics teaching 
and learning enhanced by the quality of his students’ reflections. New awarenesses, such 
as, ‘that which students at this grade level can accomplish mathematically’ and ‘the role 
that technology can play in the mathematical learning of students,’ were occasioned by 
the students themselves. This is in contrast to Monaghan’s (2004) findings that some 
teachers in his study noticed that, “tasks in technology-based lessons led their students to 
focus on the technology and at least three of the teachers felt an ‘is this maths?’ tension 
when their students attended to technological details at, in their opinion, the expense of 
the mathematics”(p. 336). 
 
Michael’s attitude with respect to his own learning. Each time that Michael said 
during the interview, “it’s made me realize … ”, we interpreted this to indicate Michael’s 
openness to learning from his project participation. He experienced a great deal of joy – 
mentioned many times throughout the interview – at seeing how the students were 
positively responding to the tasks and, thus, in his learning not only about the 
mathematical levels they were reaching from their experience but also about the ways in 
which the technology and the tasks themselves were encouraging this response. He was 
in fact reflecting on his students’ reflections. It is also noted that Michael was open to 
participating in the project right from the start, to learning something from it – even if he 
was not sure initially whether it would lead to new learning for his students. Watson and 
Mason (2007) have emphasized that, “to become an effective and professional 
mathematics teacher requires development of sensitivities to learners through becoming 
aware of one’s own awarenesses” (p. 208). There is little doubt that the professional 
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awarenesses Michael developed throughout the project, and which he shared with us, 
constituted a heightened sensitivity regarding his learners.  

 
Reflections on What Changed in Michael and on What Enabled these 
Changes 
 
We stated above that the changes in Michael’s knowledge of mathematics, of 
mathematics teaching and learning, and in his practice of teaching were enabled by two 
kinds of factors, those from without and those from within. However, as our study 
progressed, it became clear that it was in the interaction of these two types of factors that 
change was promoted. Had it not been for the ‘from-without’ factors, that is, the access to 
the resources and support offered by the research group and, consequently, the use of 
CAS-based tasks whose mathematical content differed from that usually touched upon in 
class, then the ‘from-within’ factors, such as, the quality of the reflections of his own 
students on these tasks, would not have been put into play. Similarly, had it not been for 
‘from-within’ factors, such as Michael’s disposition toward student reflection and student 
learning of mathematics, as well as his attitude with respect to his own learning, then the 
‘from-without’ factors related to the research team’s contributions would not have taken 
root and flowered. Both types of factors supported each other in a mutually intertwining 
manner. 
 
This is of interest from a theoretical perspective. It suggests firstly that the integration of 
novel materials and resources that have been designed to spur mathematical learning is 
more likely to be successful when the teachers who are doing the integrating are able to 
see that these resources are having a positive effect on their students’ learning. Secondly, 
the novel materials and resources have a greater likelihood of producing this positive 
effect on student learning when the teacher doing the integrating engages in teaching 
practices that encourage student reflection and mathematical reasoning. The synergy 
between the two types of factors was found to be a positive force in the development of 
Michael’s professional awareness, and one that constituted change not only in his 
knowledge of mathematics and mathematics teaching/learning, but also in his practice.  
 
One final remark in this section concerns the role of the CAS technology on Michael’s 
learning. As mentioned earlier, Michael’s prior experience with classroom technology 
had included mainly graphing calculators, but not the CAS. Before the unfolding of the 
project in his own classroom, he never imagined the impact of this technology on his 
students’ mathematical learning, and thus on his own learning of what his students could 
accomplish. At the heart of his coming to see that the student learning through the 
technology was huge was his realization that the presence of the technology changes the 
nature of the questions that can be asked of students, and thus the kind of mathematical 
reflection they engage in. While the tasks themselves were a crucial component of 
Michael’s learning within his own practice, the actual design of the tasks was set up in 
such a way as to work hand-in-hand with the affordances of the technology. In fact, the 
first two parts of the xn – 1 task set, which were foundational to the proving part of the 
activity, could not have been managed without the CAS. In this respect, the CAS 
technology was central to Michael’s learning. 
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CONCLUDING REMARKS 

 
In conclusion, we wish to emphasize briefly only two issues. One is that, while this study 
fits into the broad research domain of teachers learning from their own practice (e.g., 
Jaworski, 2006; Zaslavsky & Leikin, 2004), a significant feature has been that that 
practice was nourished by input coming to a large extent from outside. The second issue 
concerns the mathematical activity that was stake in the study, that of proving. 
 
With respect to the first issue, much of the research related to teachers’ learning from 
their own practice emphasizes teachers’ planning of their interactions with students, 
followed by their subsequent reflective analysis of these interactions. Considerably fewer 
studies (exceptions include, e.g., Leikin, 2006) follow the path that we did where the 
majority of the planning of the instructional interaction with respect to the mathematical 
content and the task questions to be posed to the students had already been elaborated in 
advance by the research team, even if in partial collaboration with the participating 
teachers. This, we feel, added a dimension to the study that does not often come into play 
in research on teaching practice. As a consequence, the teacher’s reflective analysis of his 
interactions with the students had to take into consideration – in a somewhat different 
manner than would otherwise be the case – the worthiness, or not, of the particular 
mathematical content at stake, the way in which it was elaborated, and the technological 
tools that were used to support its approach. The positive nature of the reflections shared 
by Michael during the post-lesson interview with one of the researchers suggests that the 
integration of resources coming from without can be a powerful stimulus to teachers’ 
learning from their own practice. 
 
With respect to the second issue, only rarely does the teaching of algebra in high school 
include activity with proving. The teacher featured in this study, Michael, could be said to 
have been very courageous in agreeing to integrate into his teaching of algebra the xn – 1 
task with its proving component. He had never before included proofs within his algebra 
teaching; nor had his students ever engaged in this form of algebraic activity. 
Nevertheless, the success that he and his students experienced with it went way beyond 
his (and likely their) expectations. Hanna and Barbeau (2008) have raised the following 
query: “Approaching proof as more than a formal way of certifying a result is bound to 
make increased demands on the teacher and involve more engagement by the students; 
the long-term value would seem to be clear, though not quantified, but can the increased 
demands be managed?” (p. 352). Michael’s and his class’s experience with the proving 
segment of the xn – 1 task provides a strong existence proof of the notion that the 
increased demands can indeed be managed.     
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