
“HOW CAN WE DESCRIBE THE RELATION BETWEEN 
THE FACTORED FORM AND THE EXPANDED FORM OF 
THESE TRINOMIALS? – WE DON’T EVEN KNOW IF OUR 
PAPER-AND-PENCIL FACTORIZATIONS ARE RIGHT”:  
THE CASE FOR COMPUTER ALGEBRA SYSTEMS (CAS) 

WITH WEAKER ALGEBRA STUDENTS1 
Carolyn Kieran    Caroline Damboise 

Université du Québec à Montréal Collège St-Maurice, St-Hyacinthe 
A small comparative study was carried out with two classes of 10th grade students in need of remedial 
help in algebra – one class being provided with CAS technology and the other class not. Two sets of 
parallel tasks were designed with the main difference between the two being the use of the CAS tool. 
Both classes were taught by the same teacher over the course of one month. Results indicate that the 
CAS class improved much more than the non-CAS class with respect to both technique and theory. 
The CAS technology played three roles that were instrumental in increasing students’ motivation and 
confidence: generator of exact answers, verifier of students’ written work, and instigator of classroom 
discussion. These findings suggest that the algebra learning of weaker students can benefit greatly 
from the integration of CAS technology. 

PAST RESEARCH IN THIS AREA 
While research evidence is beginning to accumulate regarding the positive roles 
that Computer Algebra Systems (CAS) can play in the learning of school 
algebra by academically oriented pupils (e.g., Kieran & Drijvers, 2006; Thomas, 
Monaghan, & Pierce, 2004; Zbiek, 2003), considerably fewer CAS studies have 
been specifically identified as being carried out with weaker students. Thus, 
little is known of the benefits of CAS technology for weak algebra students. 
Even though Heid and Edwards (2001) have proposed that “computer symbolic 
algebra utilities may encourage weak students to examine algebraic expressions 
from a more conceptual point of view” (p. 131), they did not refer to specific 
studies that could support this claim. However, Lagrange (2003) has emphasized 
from the research his group carried out with precalculus students that easier 
symbolic manipulation did not automatically enhance student reflection and 
understanding. In contrast, Jakucyn and Kerr (2002) have pointed out that 
precalculus students who lacked certain procedural skills could apply their 
conceptual understanding of the same procedures toward the solving of related 
problem situations, when provided with CAS technology. Similarly, in a study 
involving low-ability grade 12 students, who were using CAS in a unit on 
differentiation, McCrae, Asp, and Kendal (1999) noted that CAS technology led 
to improved strategy choice for solving calculus problems. In addition, Shaw, 
Jean, and Peck (1997) found that college students who were enrolled in a 
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developmental, CAS-based, intermediate algebra course not only seemed to 
develop some of the skills that they had not mastered from previous 
mathematics courses, but also performed better in a follow-up mathematics 
course than those students who took the traditional intermediate algebra course. 
Heid (2002), in a review of arguments against CAS use in the secondary algebra 
classroom, including the idea that they lead to a loss of by-hand skills, argued 
for the opposite view, that is, that CAS enhances students’ understanding of the 
symbolic aspects of algebra rather than supplanting such skills. However, as 
Driver (2001) pointed out, students who are weak in algebra continue to be 
barred from access to CAS due to concerns that such students may be “unable to 
benefit from the use of an algebraic calculator or become over-reliant on it and 
not develop the necessary knowledge and procedures required by the course” (p. 
229). Thus, while the evidence is extremely scanty with respect to weaker 
algebra students, the main issue appears to be whether the use of CAS permits 
these students to develop a stronger symbol sense than would otherwise be the 
case in a paper-and-pencil environment – a symbol sense that can in fact lead to 
improved by-hand skills. To adequately address this issue, a comparative study 
involving two comparable classes of weak algebra students was designed, one 
class having access to CAS technology and the other class not. The construction 
of the tasks and instructional sequences to be used in the study was underpinned 
by a theoretical framework based on the instrumental approach to tool use: the 
Task-Technique-Theory framework.  
THEORETICAL FRAMEWORK OF THE STUDY 
The instrumental approach to tool use encompasses elements from both 
cognitive ergonomics (Vérillon & Rabardel, 1995) and the anthropological 
theory of didactics (Chevallard, 1999). The instrumental approach has been 
recognized by French mathematics education researchers (e.g., Artigue, 2002; 
Lagrange, 2002; Guin & Trouche, 2002) as a potentially powerful framework in 
the context of using CAS in mathematics education. As Monaghan (2005) has 
pointed out, however, one can distinguish two directions within the instrumental 
approach. In line with the cognitive ergonomic framework, some researchers 
(e.g., Trouche, 2000) see the development of schemes as the heart of 
instrumental genesis. More in line with the anthropological approach, other 
researchers (e.g., Artigue, 2002; Lagrange, 2002) focus on techniques that 
students develop while using technological tools and in social interaction. The 
advantage of this focus is that instrumented techniques are visible and can be 
observed more easily than mental schemes. Still, it is acknowledged that 
techniques encompass theoretical notions. In this regard, Lagrange (2003, p. 
271) has argued that: “Technique plays an epistemic role by contributing to an 
understanding of the objects that it handles, particularly during its elaboration. It 
also serves as an object for a conceptual reflection when compared with other 
techniques and when discussed with regard to consistency.” It is this epistemic 



role played by techniques that is essential to understanding our perspective on 
CAS use, that is, the notion that students’ mathematical theorizing develops as 
their techniques evolve within technological environments. However, the nature 
of the tasks presented to students – tasks that include a focus on the theoretical 
while the technical aspects are developing – is crucial. Thus, the triad Task-
Technique-Theory served as our framework not only for gathering data during 
the teaching sequences and for analyzing the resulting data, but also for 
constructing the tasks and tests of this study. 
METHODOLOGICAL ASPECTS OF THE STUDY 
Research Questions 
The central research questions of this study were the following: Do students 
who are weak in algebraic technique and theory benefit more from CAS-based 
instruction in algebra than from comparable non-CAS-based instruction? If so, 
what are the specific benefits, and what roles does the CAS play that can 
account for these benefits? 
Participants 
The participants were two classes of weak Grade 10 algebra students (15 to 16 
years of age) who were required by the school to take one month of 
supplementary algebra classes in May 2005 (50 minutes per day, every 2nd day). 
The teacher of these two classes (the second author of this report) was enrolled 
in a master’s program at the first author’s university and so arranged that her 
master’s research project would involve the students of these two classes. One 
class had access to CAS technology (TI-92 Plus calculators) during the month-
long teaching sequence on algebra and the other class did not.  
Task and Test Design 
A set of parallel activities was developed for the two classes – focusing mainly 
on factoring and expanding, an area where these students were particularly 
weak. Every effort was made to have identical tasks for the two classes, except 
that where one class would use paper-and-pencil only, the other class would use 
CAS or a combination of CAS and paper-and-pencil. Some of the task questions 
were technique-oriented, while others were theory-oriented. Tasks that asked 
students to interpret their work, whether it was CAS-based or paper-and-pencil-
based, aimed to focus students on structural aspects of algebraic expressions and 
to bring mathematical notions to the surface, making them objects of explicit 
reflection and discourse in the classroom. An example of one of these task 
activities is presented in the following section on the analysis of student work. 
Each pupil was provided with activity sheets containing the task questions, 
where he/she either gave answers to the technical questions or offered 
interpretations, explanations, and reflections for the theoretically-oriented 
questions. 



In addition to generating two parallel sets of task activities, we also constructed 
one pretest and one posttest. The questions of these two tests focused primarily 
on factoring and expanding algebraic expressions, on describing the reasoning 
involved in carrying out these procedures, on describing the structural features 
of factored and expanded forms, and on explaining the relation between them. 
Test questions were divided for purposes of analysis into two types: technical 
and theoretical; students’ tests were scored according to these two dimensions.  
Unfolding of the Study 
Both classes were administered the paper-and-pencil pretest at the start of the 
study. There was no significant statistical difference between the pretest scores 
of the two classes on either the technical or theoretical dimensions. However, 
the class that had the marginally weaker technical score was the class that was 
designated the CAS class. Because the students of the CAS class had not had 
any prior experience with symbol-manipulation technology, a few periods were 
then spent in initiating them to this technology, in particular to the commands 
that would be used during the teaching sequence. Each student was provided 
with a CAS calculator for the duration of the study. The same teacher taught 
both classes. She had not had any prior experience with using CAS technology 
in her algebra teaching. She taught both classes in a similar manner: introducing 
the topic of the day at the blackboard; describing briefly the content of the given 
worksheet; circulating and answering questions while students engaged with the 
tasks of the worksheets; and bringing all the students together during the last 15 
minutes of class in order to discuss the material that they had been working on 
during that period. Students in the CAS class were sometimes encouraged to use 
the view-screen to present their work during the discussion period. At the close 
of the month-long instructional sequence, both classes wrote the paper-and-
pencil posttest, which was an alternate version of the pretest. Neither class had 
access to CAS technology for the writing of the posttest.  
Data Sources 
The data sources, which permitted a combination of qualitative and quantitative 
analyses, included: (a) all the task worksheets of each student from the two 
classes; (b) the pretest and posttest of each student; (c) the daily summaries in 
the teacher’s logbook, which she entered at the close of each class; here she kept 
track of the discussions that had occurred, and also recorded individual students’ 
comments, concerns, difficulties, high and low points of the classroom 
activities, and any other items worthy of note.   
ANALYSIS OF STUDENT ACTIVITY AND WRITTEN WORK 
Analysis of Pretest and Posttest 
An analysis of the pretest and posttest scores of the two classes of students was 
first carried out (see Table 1).  



 Pretest 
Technique 

Posttest 
Technique 

Pretest 
Theory 

Posttest 
Theory 

CAS class 74.9% 91.2% 19% 39% 
non-CAS class 75.9% 85.6% 15.2% 23.8% 
Table 1: Mean percentage scores for the technical and theoretical components of the pretest 

and posttest by the CAS and non-CAS classes. 

The wide discrepancy in the pretest scores between the technical and theoretical 
components is attributable to the fact that neither class had had experience with 
theoretically-oriented questions in their algebra classes prior to the unfolding of 
this study. (Furthermore, while the pretest-technique scores may appear to be 
quite strong, they were considered weak in a school where mastery learning was 
the goal.) In any case, it is clear that the posttest improvement in the CAS class 
on the Theory dimension was considerably greater than was the case for the 
non-CAS class. With respect to the Technique dimension, again both classes 
improved as a result of the teaching sequence that occurred between pretest and 
posttest, but the CAS class improved more. While this was a small study 
involving only two classes of students, the results of this first analysis indicate 
that the CAS class benefited more from the remedial instructional sequence than 
did the non-CAS class (see Damboise, 2006, for a detailed analysis of student 
responses to the two tests). To try to find explanations that could account for the 
greater improvement in the CAS class, we then analyzed the teacher’s logbook 
entries and students’ worksheets.    
Analysis of Teacher’s Logbook Entries and Students’ Worksheets 
The analysis of the entries in the teacher’s logbook led to several conjectures 
regarding the mechanisms at play in the CAS class – mechanisms that could 
account for the superior performance of the CAS class on the posttest. These 
conjectures were supported by the analysis of students’ technical and theoretical 
responses to the worksheet questions. In brief, the technology was found to play 
several roles in the CAS class: it provoked discussion; it generated exact 
answers that could be scrutinized for structure and form; it helped students to 
verify their conjectures, as well as their paper-and-pencil responses; it motivated 
the checking of answers; and it created a sense of confidence and thus led to 
increased interest in algebraic activity. As space constraints do not permit the 
presenting of data to support each of these results, we will confine ourselves to 
what we believe is one of our most important findings with regard to the role 
that CAS can play in helping weaker algebra students.  
The CAS generates exact answers that can be scrutinized for structure and 
form. Of all the roles that the CAS played in this study, this was found to be the 
most crucial to the success of the weaker algebra student. It proved to be the 
main mechanism underlying the evolution in the CAS students’ algebraic 
thinking. Ironically, the crucial nature of this role was first made apparent to us 
by the voicing of a frustration by one of the students in the non-CAS class – a 



frustration that we will share shortly. First, we present the CAS version (see 
Figure 1), then the non-CAS version (Fig. 2) of the task that led to this finding.  

Activity 3 (CAS): Trinomials with positive coefficients and a = 1 (

! 

ax
2

+ bx + c ) 
1. Use the calculator in completing the table below. 

Given trinomial (in 
“dissected” form) 

Factored form using 
FACTOR 

Expanded form using 
EXPAND 

(a) 

! 

x
2

+ (3+ 4)x + 3• 4    
(b) 

! 

x
2

+ (3+ 5)x + 3•5    
(c) 

! 

x
2

+ (4 + 6)x + 4 •6    
(d) 

! 

x
2

+ (3+ 5)x + 3• 3   
(e) 

! 

x
2

+ (3+ 4)x + 3•6    
2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 
it is factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form 
of the above trinomials in 1(a) – 1(c)? 

Figure 1: A task drawn from Activity 3 (CAS version). 
 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 (

! 

ax
2

+ bx + c ) 
1. Complete the table below by following the example at the beginning of the table. 

Given trinomial (in 
“dissected” form) 

Factored form Expanded form 

Example: 
     

! 

x
2

+ (3+ 4)x + 3• 4  

! 

x
2

+ (3+ 4)x + 3• 4  
= 

! 

x
2

+ 3x + 4x + 3• 4  
= 

! 

x(x + 3) + 4(x + 3) 
= 

! 

(x + 3)(x + 4)

! 

 

 

! 

x
2

+ 7x +12  

(a) 

! 

x
2

+ (5 + 6)x + 5•6    
(b) 

! 

x
2

+ (3+ 5)x + 3•5    
(c) 

! 

x
2

+ (4 + 6)x + 4 •6    
(d) 

! 

x
2

+ (3+ 5)x + 3• 3   
(e) 

! 

x
2

+ (3+ 4)x + 3•6    
2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if 
it is factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form 
of the above trinomials in 1(a) – 1(c)? 

Figure 2: The non-CAS version of the same task that was presented in Figure 1. 
Note that, in the CAS version of Question 1, students are asked to enter onto 
their worksheet the output produced by the CAS, while in the non-CAS version 
they are to record their paper-and-pencil factorizations and expansions. (N.B.: 
The “dissected” form of the first column was one that both classes were quite 
familiar with by the time they met this Activity.) The problematic nature of this 



task, and the potential of the CAS for assisting with such tasks, showed up when 
the students in the non-CAS class tried to tackle Questions 2c and 2d. 
Students in the non-CAS class were at a loss to answer these explanation-
oriented questions. They stated emphatically that they were not sure of their 
answers to Question 1, and could hardly use these as a basis for answering, say, 
Question 2d. As one student put it so forcefully: “How can we describe the 
relation between the factored form and the expanded form of these trinomials? – 
we don’t even know if our factorizations and expansions from Question 1 are 
right.” In contrast, the students in the CAS class had at their disposal a set of 
factored and expanded expressions that had been generated by the calculator. 
They thus had confidence in these responses and could begin to examine them 
for elements related to structure and form. 
CONCLUDING REMARKS 
This study analyzed the improvements of two classes of weak algebra students 
in both technique (being able to do) and theory (i.e., being able to explain why 
and to note some structural aspects), in the context of tasks that invited technical 
and theoretical development. One of the two participating classes had access to 
CAS technology for the study. At the outset, both the CAS class and the non-
CAS class scored at the same levels in a pretest that included technical and 
theoretical components. However, the CAS class improved more than the non-
CAS class on both components, but especially on the theoretical component. 
This is an interesting finding for several reasons. Many teachers insist that 
students learn to do algebraic work with paper-and-pencil first and only later use 
CAS – and then simply to verify the paper-and-pencil work. However, we found 
that the students’ paper-and-pencil technical work actually benefited from the 
interaction with CAS. The CAS provided insights that transferred to their paper-
and-pencil algebraic work and enhanced their learning. Secondly, and this is 
quite an exciting finding: Being able to generate exact answers with the CAS 
allowed students to examine their CAS work and to see patterns among answers 
that they were sure were correct. This kind of assurance, which led the CAS 
students to theorize, was found to be lacking in the uniquely paper-and-pencil 
environment where students made few theoretical observations. The theoretical 
observations made by CAS students worked hand-in-hand with improving their 
technical ability. Last but not least, the CAS increased students’ confidence in 
their algebra. This confidence boosted their interest and motivation. These 
findings suggest that the algebra learning of weaker students can benefit greatly 
from the integration of CAS technology. 
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