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Abstract Our study concerns the conceptual mathematical knowledge that emerges during
the resolution of tasks on the equivalence of polynomial and rational algebraic expressions,
by using CAS and paper-and-pencil techniques. The theoretical framework we adopt is the
Anthropological Theory of Didactics (Chevallard 19:221–266, 1999), in combination with
semiotic aspects from the instrumental approach to tool use. The analysis we present is based
on interviews carried out with a 10th grade student who participated in our research. Our
findings highlight the mathematical knowledge (technological discourse) constructed in the
process of confronting, differentiating, and articulating the several mathematical techniques
and theoretical ideas (pertaining to the numeric perspective and the syntactic perspective on
algebraic equivalence) related to the designed equivalence tasks.
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1 Introduction

The many evolutionary changes occurring within school algebra curricula around the world
over the last few decades (see, e.g., Sutherland, 2002) have included a significant shift
toward functions within the study of polynomial algebra. Although the algebraic properties
that govern the manipulation of symbols in expressions and equations are still emphasized,
work with polynomials has fused with what has become the functional leitmotif of school
algebra. However, as reflected in the opening words of Cuoco (2002), this fusion tends to
ignore the distinctions between the two. This question of the articulation of polynomial
forms and functions is but one that is related to the broader issue of the development of
hybrid versions of programs of study that attempt to include elements of both traditional
(involving expressions and equations) and functional orientations to school algebra. As
pointed out by Chazan and Yerushalmy (2003), students become confused regarding
distinctions between equations and functions, not being able to sort out, for example, how
equivalence of equations is different from equivalence of functions. According to Chazan
and Yerushalmy, it is not the case that such questions are unanswerable, but rather that
combining functional approaches with more standard treatments of school algebra leads to
such dilemmas; and that only rarely are opportunities provided for students to inquire into
these questions and to attempt to resolve them.

In considering polynomials in one variable with real coefficients, Cuoco (2002) distin-
guishes between polynomial functions and polynomial forms as follows. Polynomial functions
involve thinking about the letter in a polynomial as a variable and about the polynomial as an
input–output machine that can yield a table or a graph, and has all the attributes of real-valued
functions of a real variable. In contrast, polynomial forms are viewed as formal expressions
with the letter considered as an indeterminate and which involve operations such as factoring,
adding, multiplying, and so on. These distinctions are particularly important when students use
computer algebra system1 (CAS) technology because the polynomial-form perspective un-
derlies CAS technology, even if CAS also deals with polynomials as functions.

In their research on equivalence of algebraic expressions, Cerulli and Mariotti (2002) make
similar distinctions between what they refer to as functional and axiomatic definitions of
equivalence (corresponding to polynomial functions and polynomial forms in Cuoco’s (2002)
remarks). Their functional definition of equivalence reads: “Two expressions are equivalent if
and only if, for all numbers that are substituted into the letters, the two numeric expressions thus
obtained give the same result” (p. 161); the axiomatic definition: “If one expression can be
transformed into another by using the properties of addition and multiplication, then the two
expressions are equivalent” (p. 161). However, they also point out that since, for polynomials in
n variables, the functional and the axiomatic definitions are equivalent, they do not go into the
particularities of the equivalence of these definitions with their learners. They instead draw upon
the functional definition in order to indicate non-equivalence (by means of a numeric counter-
example) and the axiomatic definition (by means of properties and theorems) for proving
equivalence. While mathematically sound, the use of these two definitions for two different

1 WIKIPEDIA defines a Computer Algebra System (CAS) as a software program that facilitates symbolic
mathematics. The core functionality of a CAS is manipulation of mathematical expressions in symbolic form.
The expressions manipulated by the CAS typically include polynomials in multiple variables; standard
functions of expressions (sine, exponential, etc.); various special functions (Γ, ζ, erf, Bessel functions,
etc.); arbitrary functions of expressions; optimization; derivatives, integrals, simplifications, sums, and
products of expressions; truncated series with expressions as coefficients, matrices of expressions, and so
on. Numeric domains supported typically include real, complex, interval, rational, and algebraic.
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aspects of equivalence comparisons does little to enhance students’ awareness that “form and
function represent two different ways to think about polynomials” (Cuoco, 2002, p. 296).

One of the dilemmas inherent to Cuoco’s (2002) implicit challenge for school algebra is
that it is very difficult for students to think about differences between form and function if
one remains within the polynomials. A resolution of this apparent impasse is achieved by
considering a mathematical arena where the two perspectives of form and function collide—
one, for example, that involves a comparison of polynomial and rational expressions for
equivalence. The present article deals with exactly such a consideration.

The article begins with a review of the literature that includes past studies related to
equivalence of algebraic expressions and the role of technological environments in this area
of mathematics. This is followed by a description of the study’s theoretical framework, which is
based on Chevallard’s (1999) Anthropological Theory of Didactics and embedded within the
instrumental approach to tool use. We then present a discussion of the two mathematical
perspectives regarding equivalence and the related cognitive issues that underlie the study.
The bulk of the article is devoted to the analysis of a 15-year-old Grade 10 student’s foray into
the equivalence of polynomial and rational expressions, when he faces the dilemmas posed by
the dialectic between the syntactic and numeric perspectives within a CAS environment. A
discussion of the central issues informed by this research concludes the article.

2 Past research on equivalence of algebraic expressions

While a substantial amount of research has been carried out with respect to the equivalence of
algebraic expressions, very little of it has dealt explicitly with either the comparison of
polynomial and rational expressions or the bridging of syntactic and numeric perspectives.
Much of the existing body of research has highlighted the difficulties that students encounter
with understanding algebraic equivalence, as well as the importance of being able to work
flexibly with algebraic expressions in various forms and of recognizing equivalent expressions
(e.g., Arcavi, 1994; Ball et al., 2003; Goldenberg, 2003; Kieran, 1984; Kirshner, 2001; Nicaud
et al., 2004; Sackur et al., 1997; Steinberg et al., 1990). For instance, Nicaud et al. (2004) have
foregrounded the importance of equivalence, framing it as “a major reasoning mode in algebra,
which consists of searching for the solution of a problem by replacing the algebraic expressions
of the problem by equivalent expressions” (pp. 171–172). Sackur et al. (1997) have proposed
that understanding two algebraic expressions to be equivalent entails knowing that they denote
the same numerical value for a given common replacement value and realizing that the usual
algebraic transformations performed on them conserve this denotation.2

Arzarello et al. (2001), in their theoretical analyses of the meaning of symbolic expres-
sions in algebra, have pointed out:

All possible senses of an expression constitute its so called intensional aspects, while
its denotation within a universe represents its so called extensional aspect. … The
official semantics used in mathematics, and particularly in algebra, cuts off all
intensional aspects, insofar as it is based on the assumption of the extensionality

2 The term denotation is drawn from the work of the renowned mathematician and logician, Frege, who
distinguished sense and denotation. For example, the expressions 4x+2 and 2(2x+1) would have different senses,
but denote the same functional object. According to Arzarello et al. (1994), “the ‘denotation’ of a symbolic
expression in algebra refers to the number set that is represented by the expression; it is determined by the
symbolic expression and by the universe in which the expression is considered (for example the equation x2=−1
denotes the empty set when it is considered in R and the set {+i, −i} when considered in C)” (p. 42).
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axiom (two sets are equal if they contain the same elements, independently from the
way they are described or produced). (p. 64)

This position regarding the “official semantics” according to which two sets are consid-
ered equal will be taken up in the later section, “Mathematical theory of equivalence
according to the two perspectives of the syntactic and the numeric.”

Suffice it to say here that semantics (the study of meaning) is often contrasted in the
mathematical literature with syntax or syntactics (the study of rules governing the behavior
of systems, without reference to meaning). More typical distinctions between semantic and
syntactic, which associate meaning-making with the semantic and meaning-free manipula-
tion with the syntactic, tend to associate most transformative manipulations in algebra with
the syntactic. However, such a dichotomy would not be appropriate in the context of the
present study—a study in which all reflective activity involving mathematical objects and
their transformations is intimately related to meaning-making. The recent work of our
research team on the co-emergence of theoretical ideas within the technical activity of
algebra is a case in point (e.g., Kieran et al., 2006). In addition, Kaput (1989) has pointed
out that, while “the syntactic/semantic distinction is meant to delineate polar extremes, most
symbol-use acts involve a mixture of the two” (p. 175); as well, Thom (1973) has asserted
that, in practice, for the mathematician every statement that he/she is working with has some
meaning regardless of how formally it is presented. Moreover, Booth (1989) has argued that
“our ability to manipulate algebraic symbols successfully requires that we first understand
the structural properties of mathematical operations and relations which distinguish allow-
able transformations from those that are not. These structural properties constitute the
semantic aspects of algebra” (pp. 57–58). Indeed, the point is that meaning can be drawn
from a variety of sources, including the connections among the forms of algebra, its
equivalences, and its property-based manipulation activity (e.g., Cerulli & Mariotti, 2001).

Another body of research dealing with equivalence in algebra includes those studies
that have explored the use of computer algebra systems (CAS) in the learning of
mathematics at the high school and college levels (e.g., Artigue, 2002; Guin &
Trouche, 1999; Lagrange, 2000). For example, Artigue (2002) has drawn on students’
CAS work involving the passage from one given form of algebraic expression to
another to illustrate that, “equivalence problems arise which go far beyond what is
usual in the classroom” (p. 265), asserting that the CAS pushes students to confront
issues of equivalence and simplification in ways that are not so easily achieved in more
traditional, paper-and-pencil, treatments. More generally, French didactic researchers,
who have largely been responsible for elaborating the corpus of research involving
CAS, have argued that CAS can be used as a tool to promote the co-development of
both technique and theory. More will be said about this research-supported point of
view in the next section where we present the theoretical framework of our study.

The research with digital tools by the French didactique school has given rise to a number of
related studies at the international level on the use of CAS in the teaching of mathematics.
Inspired by, and wishing to build upon, the research emanating from France, ourMontreal-based
research team developed a program of research (e.g., Hitt & Kieran, 2009; Kieran, in press;
Kieran & Damboise, 2007; Kieran & Guzman, 2010; Kieran et al., 2008; Kieran & Saldanha,
2008) that has investigated the learning of the technical and theoretical aspects of various topics
in high school algebra within CAS environments, including the topic of equivalence. Pivotal to
the current article is a study, reported by Kieran et al. (2006), where data from two Grade 10
classes were analyzed with a focus on the ways in which students were beginning to think about
equivalence within a context involving polynomial and rational expressions:
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Students linked the notion of restrictions3 [within the rational expressions] to the
numerical view on equivalence, which makes sense. … Still, individual students
struggled with the restrictions. … In all, we noticed that the notion of restrictions in
relation to equivalence was not easy to grasp. The confusion was evoked by the tasks,
which involved expressions with restrictions [within the rational expressions], by the
definition of equivalence, which spoke about the set of admissible values, and by the
fact that the CAS techniques neglect the restrictions. In particular, the Test of Equality
technique was confusing; if there were restrictions, it provided ‘true’, whereas the
numerical substitution of the restriction provided ‘false’. (pp. 227–231)

Many crucial questions regarding the articulation of the syntactic and numeric
perspectives within the study of the equivalence of polynomial and rational expres-
sions could not be answered by the above classroom-based study, precisely because it
was classroom based and did not permit analyses of a fine-grained nature. Thus,
additional analyses of out-of-class student-interview data involving the same tasks
were carried out. The analysis presented in this article focuses on the interviews that
were carried out with one of the Grade 10 students, one who was quite reflective and
who was able to share his reflections with the interviewer. The present analysis
distinguishes itself from the classroom study of Kieran and Drijvers by its attention,
first, to the cognitive complexity of individual knowledge construction with respect to
polynomial-and-rational-expression equivalence; second, to a detailed description of
the mathematical theory underlying the two perspectives of the syntactic (i.e., form)
and the numeric (i.e., function) within this conceptual area; and third, to the explicit
representation of specific elements of the student’s meaning-making in relation to the
technical and the technological-theoretical of Chevallard’s (1999) Anthropological
Theory of Didactics.

3 Theoretical framework of the study

For our theoretical framework, we draw principally from Chevallard’s (1999) Anthropological
Theory of Didactics (ATD). While being a theory in its own right, the ATD has also been
integrated within the instrumental approach to tool use (see Monaghan, 2007, for a discussion
of the two main currents within the instrumental approach). Thus, the integration of the ATD
within the instrumental approach to tool use allows us to draw upon and elaborate the semiotic
affordances of the latter frame while maintaining salient aspects of the former.

The development and use of digital tools such as CAS (e.g., Artigue, 2002; Drijvers &
Trouche, 2008; Lagrange, 2000) have led to altering the way we think about the relation
between technical and conceptual knowledge in algebra education. Central to this rethinking
has been the theoretical elaboration of a framework whose generation and use within studies
involving these tools is a reflection of both the work of Vygotsky (1930/1985) on tools in
general and on cognitive tools in particular, and to a lesser extent that of Piaget on cognition
and abstraction. This framework, referred to as the instrumental approach to tool use, is one
that encompasses elements from both cognitive ergonomics (Rabardel, 2002; Verillon &
Rabardel, 1995) and the Anthropological Theory of Didactics (Chevallard, 1999).

3 The set of restrictions of a rational function f ðxÞ ¼ pðxÞ
qðxÞ (p and q polynomials in x) of real variables with real

values is A ¼ x 2 R : qðxÞ ¼ 0f g . The function f cannot be evaluated on the elements of the set A; its domain
is R−A.
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The instrumental approach to tool use makes a distinction between artifact and instrument.
While artifact is the term used to refer to the physical tool itself, instrument is used to refer to the
tool in conjunction with the cognitive schemes that the user develops while using the tool. The
process by which the physical tool becomes a cognitive instrument is called instrumental genesis
and is said to have two components: instrumentalization whereby the user’s background knowl-
edge and experience shape the way the tool is being used and instrumentation whereby the
affordances of the tool shape the way the user’s thinking develops (see Artigue, 2002).

Within Chevallard’s (1999) ATD, the objects of mathematical knowledge emerge from
didactic institutional practices consisting of four components: the types of tasks in which the
objects of knowledge are immersed; the techniques or ways of solution of these tasks; the
discourse that explains and justifies the techniques, named technology; and the theory that
provides the “abstract and generative” (p. 228) basis for the technological discourse.

In their integration of the ATD into the theoretical frame of the instrumental approach,
Artigue and her collaborators (see, e.g., Artigue, 2002; Lagrange, 2002) collapsed the four
ATD components into three: task, technique, and theory so as to reserve the term technology
for the digital tools being used in their studies. Vital to the line of research and theoretical
thinking engaged in by Artigue and her collaborators in their use of the instrumental
approach has been the claim, supported by their research findings, that a technique has not
only a pragmatic but also an epistemic value:

Technique plays an epistemic role by contributing to an understanding of the objects
that it handles, particularly during its elaboration; it also serves as an object for
conceptual reflection when compared with other techniques and when discussed with
regard to its consistency. (Lagrange, 2003, p. 271)

It is precisely this interaction between technique and theory, as constituted by the learner,
which we wish to explore more deeply in this study. To do this, we have decided to use the
original version of the ATDwith its four components of task, technique, technology, and theory,
rather than the abbreviated version as adapted by Artigue and her collaborators. This choice will
allow us to juxtapose the discourse that explains and justifies the techniques (i.e., the technology
during its constitution by the student) with the mathematical theory that provides the institu-
tional basis of the technological discourse, in other words, to discuss the relation between the
technical and the technological-theoretical in the student’s meaning-making against the more
formal mathematical subtext of the given equivalence tasks. More broadly, the instrumental
approach to tool use permits, at the same time, an analysis of the semiotic role played by the
digital tool in the co-emergent constitution of the technical-theoretical knowledge.

Radford (2006), in his semiotic-cultural approach to analyses of students’meaning-making,
has elaborated on the way in which, through words, artifacts, and mathematical signs—which
he refers to as semiotic means of objectification—the mathematical object is made apparent to
the student in an “objectification process in the course of which the student’s subjective
meanings are refined” (p. 57). Digital tools, such as CAS, are examples of such semiotic
artifacts. The CAS tool with its own internal logic carries out “simplifications” and displays the
results in a form that is not necessarily what students would expect, having been endowed with
a theoretical content prior to the students’ mathematical experience. Reflecting on such CAS
output and trying to reconcile it with, and integrate it into, their existing mathematical
knowledge is constitutive of the powerful semiotic role that such digital artifacts can play.
When the design of the tasks takes advantage of this potential of CAS tools, the mathematical
concepts (both technical and theoretical) embodied within the tasks and tools can be
transformed into objects of consciousness for students. Radford has described the nature of
the objectification process by which the student’s subjective meanings are refined as follows:
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On one side, meaning is a subjective construct: it is the subjective content as intended
by the individual’s intentions. Meaning here is linked to the individual’s most intimate
personal history and experience; it conveys that which makes the individual unique
and singular. On the other side and at the same time, meaning is also a cultural
construct in that, prior to the subjective experience, the intended object of the in-
dividual’s intention (l’objet visé) has been endowed with cultural values and theoret-
ical content that are reflected and refracted in the semiotic means to attend to it.… It is
in the realm of meaning that the essential union of person and culture, and of knowing
and knowledge are realized. (pp. 53–54)

In the following mathematical discussion of the theoretical content inherent in syntactic
and numeric perspectives on equivalence, we foreshadow the complexity of their articulation
in the process of meaning-making engaged in by the student.

4 Mathematical theory of equivalence according to the two perspectives of the syntactic
and the numeric

In our opening remarks, we briefly situated our study in relation to Cuoco’s (2002)
distinction between polynomial form with its syntactic underpinnings and polynomial
function with its numeric underpinnings. In this section, we elaborate more fully on the
nature of the mathematical objects that are typically referred to in high school algebra as
polynomial/rational expressions4 and polynomial/rational functions. This elaboration will
serve as background for the later discussion of student meaning-making within this study.

Algebraic expressions are ordered series of symbols (numbers, parentheses, arithmetic
operator, symbol for a variable) conforming to a given grammar (see, e.g., Kirshner, 2001).
The algebraic expressions that we consider in this study can correspond either to rational
fractions or to rational functions, depending on the way in which they are interpreted. Let us
begin with rational fractions5 in one indeterminate X with coefficients on the set of real
numbers R, that is, elements of the field R(X). If we see algebraic expressions as denoting
elements of the field of rational fractions R(X) and we center our attention on their syntactic-
algebraic properties, then we say that two expressions F and G are equivalent from the
syntactic perspective when they have a common algebraic rewriting.6 This rewriting can be
obtained, for instance, by applying the algebraic properties of the field R(X), such as the
commutative, associative, distributive, or the identity properties, but also the properties
associated with the theorems of factoring, canceling, long division, etcetera.

For example, expressions GðX Þ ¼ 1
X and HðX Þ ¼ X$2

X 2$2X , when considered as rational
fractions, are equivalent from the syntactic perspective because expression H can be

4 The definitions that will follow are given for rational fractions, considering that the ring of polynomials R[X]
is embedded in the field of rational fractions R(X). The same is done for rational functions and polynomial
functions.
5 The field of rational fractions in one indeterminate R(X) is the field of fractions of the polynomial ring in
one indeterminate R[X]. See, for example, Grillet (2007).
6 The definition of syntactical equivalence can also be given in the following way: Two expressions are

equivalent if their cross products are equal. For example, GðX Þ ¼ 1
X and HðX Þ ¼ X$2

X 2$2X are syntactically
equivalent because their cross products are equal: ð1Þ X 2 $ 2Xð Þ ¼ ðX Þ X $ 2ð Þ .

This is a more formal definition from the mathematical point of view, which follows the formal
construction of the field R(X), but is not sensitive to the multiple variants to be considered in a student’s
productions.
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rewritten as: 1
X % X$2

X$2 , and canceling the common factors of the denominator and the

numerator,7 we obtain that H is rewritten as: 1 % 1X ¼ 1
X ¼ GðX Þ .

On the other hand, we can consider algebraic expressions as denoting rational functions8 by
substituting a number into the indeterminate symbol X. In this case, we will say that two
algebraic expressions f and g are equivalent from the numeric perspective when f ðxÞ ¼ gðxÞ
for all x in the common domain R−F (F finite set).9 For instance, expressions gðxÞ ¼ 1

x and

hðxÞ ¼ x$2
x2$2x are equivalent from the numeric perspective in the common domain R $ 0; 2f g .

Although the notions of rational fractions and rational functions concur10 when the
domain of validity is R, the two perspectives of equivalence emphasize different aspects.
For the numeric perspective, it is essential to include the study of the characteristics of
domains and images for the corresponding rational functions being compared. This differ-
entiates the numeric perspective from the syntactic one, which does not require taking into
account the domains and images of the expressions. Grappling with and coordinating these
different aspects lies at the heart of students’ meaning-making for expressions and their
equivalence.

For the syntactic perspective, the rewriting of expressions plays a central role. On the
basis of the algebraic properties of the operations of the field of rational fractions R(X), the
rewriting of expressions allows for verifying equivalence and for obtaining equivalent
expressions. These operational characteristics determine the syntactic perspective. To use

another example, the expressions MðX Þ ¼ X 2 þ X $ 6 and NðX Þ ¼ X 3$3X 2$10Xþ24
X$4 ,

when viewed as rational fractions and invoking the syntactic perspective, are equivalent
because the syntactic rewriting of the latter rational fraction yields the former, which is the
same rational fraction. No consideration of domain is involved when viewing an expression
as a rational fraction.

While the rational expressions GðX Þ ¼ 1
X and HðX Þ ¼ X$2

X 2$2X denote the same rational
fraction, they do not denote the same rational function. On the one hand, these expressions are
numerically equivalent, subject to certain restrictions. They have the same values, except when
x=0, 2. On the other hand, these expressions can be re-written as the same expression by using
the algebraic properties of the field of rational fractions R(X), that is, they are syntactically
equivalent. Although two expressions may be syntactically equivalent because one expression
can be transformed into the other following certain syntactic rules, the substitution of a number
into the variable symbol of two syntactically equivalent expressions may not yield the same
numerical result for each expression. This is explained by the fact that two particular trans-
formations of expressions, cancelation and expansion, are special in the sense that equivalence

7 For rewriting H(X), one could also perform the division indicated by: X$2
X$2 ¼ X $ 2ð Þ ' X $ 2ð Þ ¼ 1 ,

when H(X) is considered to represent a quotient of polynomials.
8 By substituting a number into the indeterminate symbol of a rational fraction, we obtain arithmetic
expressions that can be simplified into a number or into impossibility (1/0). This allows considering the
corresponding function of the rational fraction f(X), that we will call the rational function; that is to say a set of
ordered pairs (x, f(x)) where x is in a set of values whose substitution gives a number and f(x) the number
obtained by substitution.
9 This definition allows us to have a well-defined transitive property of the equivalence relationship: If f and g
are equivalent on R−F1 and g and h are equivalent on R−F2, then f and h are equivalent on R $ F1 [ F2ð Þ
(for F1 and F2 finite sets).
10 As do polynomials R[X] and polynomial functions R[x]. When the coefficients are taken in the field of real
numbers R, for every polynomial function there exists one unique polynomial, and vice versa. But this is not
always true. If the coefficients of the polynomials are in a field of characteristic different from zero, different
polynomials may give rise to the same polynomial function. For example, the polynomial X2 − X∈Z2[X]
corresponds to the zero function.
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obtained through these transformations does not guarantee that if a number substituted into one
expression gives a number, then it will also be the case for the other. Whether or not two
expressions syntactically equivalent through one of these transformations denote the same
mathematical entity depends on the mathematical entities being considered. In the case of
rational fraction, the answer is yes, and in the case of rational function, the answer can be yes or
no. In other words, when considering equivalence, for rational fractions, a syntactic perspective
is sufficient; for rational functions, it is not—a numeric perspective is also required. Thus, the
designed tasks, which involved both polynomial and rational expressions, faced students with
the necessity of articulating the differences between the two perspectives on algebraic equiv-
alence. However, the tasks did not aim at developing an understanding of the two mathematical
objects at play, that is, rational fraction and rational function. Rather, it was the articulation of
the two perspectives on equivalence, the syntactic and the numeric, in the face of polynomial
and rational expressions that was our main aim.

The underlying research question of this study is the following: What is the nature of the
technological discourse that students develop in the process of articulating the syntactic (form)
and numeric (functional) perspectives when grappling with the equivalence of polynomial and
rational expressions in a task-based, CAS and paper-and-pencil, environment?

5 Methodological considerations of the study

The instrumental approach, with its focus on tools and tool use, in concert with the ATD and
its emphasis on the epistemic role played by technique in the development of theoretical
knowledge related to given tasks, suggested a methodology where consideration had to be
accorded to both task design and the obtaining of detailed cognitive data, as well as to the
nature of the analysis to be carried out, with particular attention to the role of the CAS tool.
This section briefly describes these considerations, first, those related to the design of the
tasks and, second, those pertaining to the research participants and the methods of data
collection and analysis.

5.1 The design of the tasks

The research team developed a set of task sequences on equivalence, involving polynomial
and rational expressions, within an environment that included both paper-and-pencil and a
CAS tool (the TI-92 Plus handheld calculator). While the full set of tasks was used in the
classroom study (see Kieran et al., 2006), the research featured in this article involved a
subset consisting of four task sequences from the initial set of activities used in the
classroom study, those revolving around the articulation between the syntactic and numeric
perspectives on equivalence (see the Appendix for the task questions included in this
study).11 Table 1 displays the three expressions that were the focus of this study.

The expressions and the tasks in which they were embedded were designed with
several considerations in mind. First, the expressions were of a level of complexity

11 See the project web site for the entire set of activities: http://www.math.uqam.ca/APTE/TachesA.html

Table 1 The three expressions
that are central to this study Expression 2: x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ

Expression 3: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ
Expression 5: x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ
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that would not permit students to be able to tell just by looking at them whether or
not they were equivalent. Second, the expressions included both a polynomial and a
rational expression that were syntactically equivalent, as well as a non-equivalent
polynomial expression. More specifically, rational Expression 5 can be simplified
via factoring and cancelation, or expansion and long division, to the polynomial
Expression 3; Expression 2, while having some factors in common with both
Expressions 3 and 5, is not equivalent to them. Third, the task sequences comprised
questions of both a technical and a theoretical nature so as to encourage the co-
emergence of both technical and theoretical knowledge. Fourth, the task questions,
which were at times paper-and-pencil oriented, and at other times CAS oriented, were
sequenced in such a way as to allow students who had no prior experience with
formal concepts of equivalence to come gradually to an understanding of algebraic
equivalence in terms of both numeric and syntactic perspectives.

The first task sequence involved comparing expressions by numerical evaluation.
The CAS technique of numerical substitution was thereby to be introduced right from
the outset. Using the CAS tool to do their computations, students were to substitute
two given numbers into the given expressions, followed by two other numbers of
their own choosing. The aim was to have them notice that while some values for x
yielded the same result for the expressions, this was not always the case. The open-
ended questions of a theoretical nature were to allow for the expression of such
noticing. The students were then to be asked to conjecture what would happen if they
extended the table to include other values of x. By asking this question, we were
indirectly inquiring as to whether students were beginning to think about the numer-
ical restriction on Expression 5, and by extension whether they might express the idea
that not all numerical substitutions were guaranteed to give the same results for two
given expressions.

The second task sequence involved comparing expressions by means of paper-and-
pencil algebraic manipulation, namely by factoring. This sequence aimed first at
having students make a conjecture based on their prior numerical work as to which
of the given expressions might be re-written in a common form. After factoring the
given expressions, they were then to be asked to explain in what way these algebraic
manipulations supported (or not) each of those conjectures. Technological-theoretical
questions of this sort were designed to encourage the beginnings of a reflection on the
articulation of the two perspectives on equivalence. In addition, the factored form of
the given expressions was such that students might notice that certain expressions
involved the same factors (i.e., Expressions 3 and 5, after the cancelation of the
common factor in numerator and denominator of Expression 5), whereas others (i.e.,
Expression 2) might share only some factors with the other expressions. The devel-
oping of this awareness was considered to be potentially useful for the follow-up task
sequence that was to involve working with the expanded forms of the three given
expressions; more specifically, the combination of factoring and canceling could be
seen as being equivalent operation-wise to dividing the expanded form of the numer-
ator by the factor that constituted the denominator.

The third task sequence focused on the use of CAS to obtain the expanded forms of the
given polynomial and rational expressions. While the expanded form of Expression 5 by
CAS would yield the same polynomial form as for Expression 3, no information would be
provided by the CAS tool as to domain restrictions regarding Expression 5, or to the fact that
the simplified form of Expression 5 involved a domain change. In other words, in applying
the CAS techniques of expansion, factoring, and automatic simplification, the polynomial
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and rational expressions are treated by the CAS as rational fractions. It was intended by the
designers that this characteristic of the CAS could help reinforce students’ own paper-and
pencil results with respect to the factored and simplified form for Expression 5, which was
thus syntactically equivalent to Expression 3.

The fourth task sequence was to introduce the CAS technique that we refer to as the CAS
Equivalence Test. This test involved entering two given expressions into the CAS with an
equal sign between them, and then pressing the Enter button. Students were first to be asked to

work with Expressions 3 and 5: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ ¼
x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ .

TheCASwould thendisplay“true”as itsoutput,whichstudentswouldbeasked tointerpret.Next,
we were to introduce the CAS Test of Numeric Equality, which would involve, in this case,
replacing xby−2 in the above equation and interpreting the result givenby theCAS.The fact that
the CAS would then display “false” was intended to be a pivotal moment within the activity. In
applying the CASEquivalence Test, polynomial and rational expressions are treated by theCAS
as rational fractions,whereas in applying theCASTest ofNumericEquality the same expressions
are treated as rational functions. Itwas considered that thisparticular taskwould serve as apoint of
confrontationbetween the twodifferentperspectivesonequivalenceandwouldhave thepotential
to lead students toattempt to explain and to justify the twoseeminglycontradictory resultsyielded
by the CAS. In addition, the same CAS Test of Equivalence, when supplied with Expressions 2
and3as input,wouldreturn thegivenequationas itsoutput (this is theCAS’smannerofdisplaying
that the given expressions on each side of the equal sign are not syntactically equivalent). While
studentsmight expect an output of “false” in this case, they would bemistaken because there are
certain values of x forwhich both sides of the equationwould yield the same result. This aspect of
the task was intended to encourage the related idea that syntactically non-equivalent expressions
maybeequal for certainvaluesand that thesevalues areprecisely those that are the solutionsof the
equation formed from such a pair of expressions.

5.2 Methods: the participant and the data collection

The 10th grade student who participated in this study was one who volunteered to spend an
hour or so after class each day for a few days, working on the designed tasks and being
interviewed while he was engaging in these tasks. His teacher described him as a very good
student who reflected on his mathematics and who posed interesting questions during his
mathematics classes. The interviews, conducted by a member of the research team, were
carried out 2 weeks before the same tasks were presented within the classroom study. The
student, Andrew, received a modest stipend for his participation.

All interviews were videotaped and later transcribed. Andrew’s CAS calculator was hooked
up to a view-screen that projected onto the wall behind him, thus allowing both the interviewer
and the videographer to take note of, and to film, everything that Andrew entered into the CAS
device. Andrew was also able to look back at the view-screen projection to see what the
researchers were filming. Andrew’s prior experience with the CAS tool was quite basic, but
adequate. He had been introduced to the CAS tool and to some of its commands during the
week preceding the interviews when he and his classmates had worked on an activity involving
factoring the sum and difference of cubes. At that time, they had become acquainted with the
CAS commands: Factor and Expand. The CAS Evaluation command and the Equivalence and
Numeric Equality Tests were introduced during the interview itself.

As was the case with his classmates, Andrew had already learned the four basic
operations with polynomials, and paper-and-pencil techniques for factoring certain bino-
mials and trinomials, and for solving linear and quadratic equations, during his 9th grade
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mathematics course the year prior. The pretest that was administered to the class at the outset
of the larger classroom study showed that Andrew was quite skilled in the syntax of symbol
manipulation of polynomial expressions. However, as per the Quebec school mathematics
curriculum, he had not yet had any formal school experience with the notion of equivalence,
nor with rational algebraic expressions. During the usual mathematics lessons of the
previous month, the class had begun the textbook treatment of functions, which included
the standard introductory topics of domain and range, dependence, relation versus function,
and modes of representation, along with graphing calculator technology. The interviews with
Andrew took place shortly after this classroom work with functions.

The data that were analyzed included all of the task worksheets on which Andrew wrote his
responses and theoretical reflections, as well as the transcripts of the interviews, all of which
were conducted while Andrew was working on the designed tasks. It is noted that both Andrew
and the interviewer posed questions to each other—Andrew, so as to better understand the
intent or meaning of a task question, and the interviewer, so as to better understand Andrew’s
thinking. Their conversations introduced some unplanned-for task activity.

The approach we took in analyzing the data was, through the solution of the designed
tasks, to look for the confronting, comparing, and exploring of the different techniques
available to Andrew for judging equivalence—both CAS and paper-and-pencil—to gauge
their epistemic value, but we were also looking for the mathematical conceptual basis that
supported their application. We were interested in the descriptions that the student developed
for explaining the differences and “contradictions” obtained by the application of the
different techniques. In other words, we were interested in studying the technological
discourse developed for conciliating the differences between the two perspectives of alge-
braic equivalence. In line with Radford (2006), we wished to seek indications of the
objectification process by which the student’s subjective meanings on algebraic equivalence
were being further developed and refined.

6 Results

The results we present are drawn from an analysis of the interviews with Andrew and
correspond to the different task sequences proposed to him, as well as the spontaneous tasks
he generated for himself. First, we discuss Andrew’s elaboration of a conjecture on the
equivalence of the given algebraic expressions. Then, we analyze the way in which he justified
his conjecture through factoring and expanding techniques. Later, we present the part of the
interview where the differences between the two perspectives on algebraic equivalence are
confronted. Finally, we discuss the way in which Andrew made explicit these differences and
then reconciled and articulated them. We note that our ATD-inspired representations of the
techniques and technological explanations suggested by Andrew’s work make use of the more-
commonly used polynomial-and-rational-expression terminology, while our accompanying
analyses include the more formal terminology of rational fraction and rational function that
was introduced in the a priori mathematical analysis.

6.1 Conjecturing the equivalence of algebraic expressions from a numeric perspective

The first part of the interview (Comparing expressions by numerical evaluation) consisted of
evaluating given algebraic expressions and producing a conjecture regarding their numeric
equivalence. In this part of the interview, we introduced evaluation with CAS as an
efficient technique for obtaining the value of an expression for specific values of x: the
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expression is typed into the calculator, followed by the symbol “|” (by using a special key on
the calculator), and then inserting the value of x to be used in evaluating the expression. The
CAS returns the corresponding value of the expression (for instance, in evaluating:
x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ

!!x ¼ 1
3 , the calculator returns 0 as the result). Table 2 shows

the expressions that were evaluated in the interview, the values of x used for their evaluation,

and the results obtained. In the interview, two values of x were given: 13 and −5; we asked
Andrew to choose two more values. He chose 6 and 7.

While Andrew filled out the table of results, he spontaneously identified several numer-
ical relationships, in particular the equality of values of the expressions for several values of
x that had been substituted. Once the table was completed, the interviewer asked:

I: What do you observe about some of those results?
A: Three and five are the same results, with… no matter what number you use, with no
matter what x you use. The result for expressions two, three and five using the given
values are equal to zero, for the given values, all are equal to zero. And the results for
three and five, using the chosen values of 6 and 7, are equal to each other.

The numeric work of these activities served as an empirical basis for conjecturing the
nature of the values that the expressions could take for any possible value of x. The next task
question of the activity was as follows: Based on your observations with regard to the results
in the table above, what do you conjecture would happen if you extended the table to include
other values of x? Andrew wrote on his answer sheet: The results for expressions 3, 5 would
continue to be equal to each other. In terms of our theoretical distinctions between the two
perspectives on equivalence, we say that Andrew was conjecturing with respect to the
numeric equivalence of Expressions 3 and 5, considering them as rational functions—even
if Andrew never used such terminology.

It also seems important to remark that, throughout the interview, Andrew often resorted to the
numeric approach for checking his work. For instance, in moments of doubt or conflict with

Table 2 Evaluation of algebraic expressions by using CAS

Expressions Values of x

1
3 −5 6 7

Expression 2: x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ 0 0 2618 5760

Expression 3: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ 0 0 5236 9600

Expression 5: x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ
xþ2ð Þ

0 0 5236 9600

Table 3 CAS evaluation for conjecturing the numeric equivalence of algebraic expressions

Technique If the expressions are not identical, evaluate them for somea values of x.

If the expressions are identical, there is no need to evaluate.

Technology If two algebraic expressions take on the same values for a set of values of x, they can take on the
same values for any value of x, that is, they can be numerically equivalent expressions.

Type of task: to conjecture numeric equivalence of two given algebraic expressions
a The problem associated with the exact number of values necessary for establishing the numeric equivalence
of two expressions is generally taken up by students in their later algebra courses. Thus, Andrew had not yet
studied the problem of determining a polynomial function of degree n from knowing n+1 different values of
its image set.
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respect to the equivalence of expressions, he verified his syntactically obtained answers by
evaluating the involved algebraic expressions for several values. CAS played a central role for
these verification tasks, reassuring Andrew that his decisions as to equivalence were well
founded and contributing to his understanding of the connections between his syntactic and
numeric work—thereby illustrating the epistemic value of the CAS evaluation technique.

Table 3 presents our analysis of Andrew’s conjecture on the numeric equivalence of
Expressions 3 and 5, in terms of the technique and the technology involved, as per
Chevallard’s (1999) ATD.

6.2 Two syntactic techniques for gaining certainty: expanding and factoring

In the next segment of the interview, the interviewer asked Andrew to justify his conjecture
on the numeric equivalence of Expressions 3 and 5 for all numbers. He asked:

I: What if somebody else said: “well, you can’t try all the numbers”. What way would
you try to prove to them that the results for those would always be equal, without
trying all the numbers?
A: I’d simplify the expressions or I’d factor them out, and then or, and then I’d just,
basically my equation would be expression for number 3 equals expression for number
5. I would see if that’s correct.

As shown below, Andrew expanded or factored the given expressions so as to obtain certain
“forms” that he could compare. According to Andrew, if two expressions could be rewritten to
yield the same form, then they would take on the same values for any x, in other words, they
would be the same rational function. In this way, Andrew resorted to syntactic techniques for
justifying the numeric equivalence of these expressions.

We next present our analysis of Andrew’s justification of his conjecture regarding the
numeric equivalence of Expressions 3 and 5: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ and
x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ .

6.2.1 Supporting numeric equivalence by means of a technique from the syntactic
perspective: the expanding technique

Andrew spontaneously justified his conjecture by expanding and simplifying the given
expressions. With paper and pencil, he worked out the indicated operations (multiplications
and divisions) and simplified similar terms, considering the expressions as denoting a
polynomial and an indicated quotient of two polynomials. In this way, he obtained a form
of the given expressions by means of which he could compare them: the expanded form.

For Expression 3, Andrew multiplied and, by simplifying similar terms, obtained the
polynomial:

3x4 þ 11x3 $ 25x2 $ 23xþ 10

Later, for Expression 5, he explained to the interviewer how to simplify by performing
long division of the two polynomials of this rational expression, obtaining a polynomial
expression as result.

A: I would have figured it out using division, and then if your result is equal to this
answer [expanded form of Expression 3], then the same will be true… that they’re
equal to each other.
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It is important to remark that, in this division, Andrew did not consider any restrictions on
the polynomial divisor. It was a purely syntactic application of the long division of a
polynomial by another polynomial in order to obtain a polynomial quotient (in this case
the remainder being zero). According to Andrew, if the result of the division were equal to
Expression 3, it would be established that Expressions 3 and 5 were one and the same.

Table 4 shows the analysis of the techniques used by Andrew for rewriting the expres-
sions and the (underlying) technology supporting their application. Note that, although
polynomial and rational expressions are both considered rational fractions within the
syntactic perspective, the collapsing of these two kinds of expressions under the one term
of rational fraction does not allow us to differentiate the set of techniques and "technological
discourses" involved in Andrew’s solutions. Thus, we maintain their separateness and refer
to them as polynomial and rational expressions, even if the mathematical object “rational
fraction” is more formal and general.

For Andrew, the fact that he obtained the same results when expanding Expressions 3 and
5 was not yet being explained in “technological terms” that embraced both the syntactic and
numeric perspectives. The results seemed to be simply a response to the task—a conse-
quence of the application of the techniques that he had for rewriting expressions.

6.2.2 Supporting numeric equivalence by means of another syntactic technique:
the factoring technique

After Andrew’s spontaneous use of expanding to justify his conjectures as to numeric
equivalence, the interview continued with Part II—on comparing expressions by
algebraic manipulation, this time with Andrew using the factoring technique for
supporting his conjecture about the numeric equivalence of expressions, that is, their
equality as rational functions. First, Andrew was asked to make a conjecture as to
which of the above set of given expressions (Expressions 2, 3, and 5) might be re-
expressed in a common form. Based on his results from the previous part of the

Table 4 Expanding technique for establishing syntactic equivalence of algebraic expressions

Polynomials Rational expressions

Technique Expand the expressions and simplify similar
terms.

Perform the long division corresponding to the
rational expression (dividing the numerator
polynomial by the denominator polynomial).Compare the polynomials obtained.

Compare the polynomial quotients obtained.

Technology Every polynomial expression can be expanded
and simplified by performing the indicated
operations (additions, subtractions and
multiplications).

Given a rational expression f/g, it is always
possible to perform the corresponding
division to obtain polynomials q and r such
that f =qg+r.

Given two polynomial expressions, they are
syntactically equivalent if the same
polynomial is obtained as a result of
expanding and simplifying them.

Given two rational expressions, they are
syntactically equivalent if the same
polynomial quotient is obtained as a result of
performing the corresponding long divisions
of numerator by denominator for each
expression, provided there are no
remainders.

Type of task: establishing syntactic equivalence of two given algebraic expressions (i.e., rewriting them as the
same expression)
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interview (using the expanded form), Andrew answered that Expressions 3 and 5
could be rewritten as the same expression. In his words:

A: I believe that 3x4 þ 11x3 $ 25x2 $ 23xþ 10 is a common form of expressions 3
and 5.

The interviewer continued by asking him to establish the equivalence without using the
expanded form, but still with paper and pencil: To test your conjecture by means of paper-
and-pencil algebra, re-express the given expressions in another form (not the expanded
form).

Andrew knew some basic techniques for factoring polynomials, including factoring by
grouping. He factored Expressions 2 and 3 and obtained:

Expression 2 : x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ ¼ xþ 5ð Þ x$ 4ð Þð Þ xþ 1ð Þ 3x$ 1ð Þð Þ
Expression 3 : 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ ¼ 3x$ 1ð Þ x$ 2ð Þ xþ 1ð Þ xþ 5ð Þð Þ

For Expression 5, he considered performing the division, but after reviewing the answers
that he obtained from the other expressions, he put the polynomial of the numerator into
factored form and canceled the factor that was in common with that of the polynomial
denominator. Finally, he obtained the following:

He then compared the factorizations:

A: So, some are… there’s a lot of similar factors… x – 2 is seen in three and five,
basically they’re all the same, all the factors are the same. Except x – 4 in the first one
[Expression 2], and in the other two it is x – 2 [Expressions 3 and 5]. I don’t know.
I: Is that surprising?
A: Uh, yeah, I guess so. Well I wouldn’t expect these to be equal [pointing to
Expressions 3 and 5], just ‘cause I wouldn’t have a clue just by looking at them…

It is of interest that Andrew was initially surprised by the fact that, after cancel-
lation, Expressions 3 and 5, had the same factors—because, as he said, their original
expressions were so different. Nevertheless, we wonder whether he had ever before
thought about the relationship between polynomial long division and the cancelling of
factors in the numerator and denominator of a rational expression, which he had just
carried out for Expression 5. By means of the syntactic techniques of expanding and
factoring, Andrew obtained the same results (polynomial quotient and simplified
rational fraction for Expression 5) for Expressions 3 and 5. The factorized forms
allowed Andrew to compare the expressions (factor by factor). Based on this com-
parison, he corroborated the syntactic equivalence of Expressions 3 and 5 and their
non-equivalence with Expression 2. As he said:

A: It makes sense that this one [pointing to the factorization of Expression 2] it is a bit
different because the results were different. And it makes sense that these [factoriza-
tions of Expressions 3 and 5] were equal. That’s what I said before.
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Table 5 presents the analysis of the techniques and technologies underlying Andrew’s
solution of this set of tasks.

By this moment of the interview, Andrew had articulated the equivalence of Expressions
3 and 5 through a combination of several approaches; namely, he had stated:

& “all the factors are the same” [their factorized forms have exactly the same factors, after
canceling common factors; here the expressions are denoting polynomials and rational
expressions];

& “they have the same common form” [identical expanded form, after multiplying, sim-
plifying similar terms or dividing the polynomials involved; here the expressions are
denoting polynomials and rational expressions];

& “three and five have the same results, with… no matter what number you use, with no
matter what x you use” [they take on equal values when being evaluated for any value of
x; here the expressions are denoting polynomial functions and rational functions].

In the following section, we present the analysis of Andrew’s subsequent strategies for
facing the difficulties that arose when considering an aspect of the numeric perspective to
which he had not attended until now, but which generated a conflict between the two
perspectives on algebraic equivalence: the domain restrictions of the expressions. In the
process of resolving this issue, Andrew constructed a new technological discourse for
embracing both the numeric and the syntactic perspectives on the equivalence of algebraic
expressions.

6.3 The issue of domain constraints and equivalent syntactic forms

The interviewer continued, asking Andrew to find the domain of definition for the rational
functions given by Expression 3: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ , and Expression 5:
x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ . The interviewer asked:

I: Is there any value of x that would not be permissible as a replacement value for x in
Expressions 3 and 5?

Table 5 Factoring technique for establishing syntactic equivalence of algebraic expressions

Polynomials Rational expressions

Technique Factor the polynomials. Factor the numerator and denominator
polynomials and cancel the common factors.Compare the factors.

Compare the factors of the simplified rational
expressions.

Technology Some second-degree polynomials can be
factorized as the product of two non-
constant linear factors.

It is possible to obtain a “simplified form” of a
given a rational expression f/g, by canceling
common factors of its numerator and
denominator polynomials.Given two polynomial expressions, they are

syntactically equivalent if they have exactly
the same factors.

Given two rational expressions, they are
syntactically equivalent if they have the same
simplified forms.

Type of task: establishing syntactic equivalence of two given algebraic expressions (i.e., rewriting them as the
same expression), through factoring
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A: Maybe zero. No, actually everything would work.
I: When you see that denominator x+2…
A: Hmm, hmmm… Negative 2. ‘Cause then it would be zero.
If x were negative 2… then the denominator would be negative 2 plus 2, which is zero
and anything over zero is equal to zero.

Note the prompt by the interviewer to take notice of the denominator, x+2. Andrew knew
that having a zero in the denominator presented a “special case” for determining the domain
for the function represented by Expression 5 (in his regular math class, he had been taught
functions, function domains, and function images). At that moment, the interviewer used
numeric examples for reminding Andrew that division by zero does not equal zero, but is
rather “undefined.”

From this intervention, Andrew concluded that the function given by Expression 5 was
not defined for x=−2. The interviewer continued, asking about the consequences of this non-
definition with respect to the equivalence of Expressions 3 and 5:

A: [Andrew reads aloud the task instructions: In Part I(C) you made some conjectures
based on numerical evaluations of expressions. Explain in what way the algebraic
manipulations in Part II(B) [involving factoring] supported or not each of those
conjectures.]
Basically, I had said that anything, any x value that would be applied to 3, to
Expressions 3 or 5, that they would always be equivalent, they would always equal
each other.
But, well, I should have seen this before too. I don’t know why I didn’t… I know now
that negative 2 wouldn’t work and I’m sure there are others that wouldn’t work either.
I: So, here we’re referring to the conjectures you made in Part IC [on the numerical
equivalence of the expressions]. So would you say that the algebraic manipulations
you did [the interviewer refers to the factorizations that Andrew did] supported your
conjectures?
A: Well just, it [he is referring to the factorized form for Expression 5, once the
common factors are cancelled: x$ 2ð Þ xþ 5ð Þ 3x$ 1ð Þ xþ 1ð Þ ] is, like, another form
of the expression, which is, I guess, once the expression is factored out, and then
they’re still equal to each other. So, that makes sense [small laugh]. Basically,
Expressions 3 and 5, when they are fully factored, at least to my capability, they’re
equal to each other, still. So, it just supports my conjecture that, with any x value,
excluding negative 2, they would be equal to each other.

Our tasks were designed so that students would confront the differences between
syntactic and numeric equivalence. On the one hand, the function given by Expression
5 is not defined for x=−2, its domain is R−{−2}. On the other hand, the function
given by Expression 3 is defined for every real number, that is, its domain is the set
of real numbers R. So, these expressions (the functions that they denote) are not
numerically equivalent for every real number but rather for the numbers in the
common domain R−{−2}.

In this first contact with the differences between the two perspectives on alge-
braic equivalence, Andrew incorporated the restriction as an exception to the equal-
ity of the values of the expressions: although these expressions are syntactically
equivalent (they can be rewritten as the same polynomial expression), there is a
value of x for which their values are not equal (they do not denote the same
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function). In Andrew’s words: “with any x value, excluding negative 2, they would
be equal to each other”.

6.4 Dealing with the differences by exploring the values of the equivalent syntactic forms at
the restriction: coming back to the numeric perspective

The interview continued with a sequence that involved the Expanding technique with CAS
for finding the expanded form of a given expression (Part III: Testing for equivalence by re-
expressing the form of an expression—using the Expand command). In this part of the
interview, Andrew’s use of CAS techniques was very relevant for exploring, confronting,
and comparing the results obtained through the different perspectives on the algebraic
equivalence of expressions.

Andrew typed in Expression 2, preceded by Expand and got the expanded form, as
follows:

Expand x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ½ ) 3x4 þ 5x3 $ 59x2 $ 41xþ 20

Then, he obtained the expanded polynomial form of Expression 3: 3x4þ11x3$25x2$23xþ10 ,
and anticipated the polynomial result he would get for Expression 5 by using the same
Expand command. However, after having found the restriction for Expression 5, he was
not quite sure:

A: My prediction for this is that this [Expression 5] is going to be the same thing [as
the expanded form of Expression 3]…because that’s the result I’ve been getting the
whole time, that they’re equal to each other, except for the minus two. I don’t know if
that will change anything…

Using the CAS, Andrew obtained the expanded form of the polynomial corresponding to
Expression 5: 3x4 þ 11x3 $ 25x2 $ 23xþ 10 . His previous work with paper and pencil
corroborated the results he was obtaining with CAS at this moment. Yet, Andrew was
looking for the effects of the restriction on the CAS expanded forms of the expressions, as is
suggested by the following excerpt:

A: I thought it was going to be the same, but I didn’t know what would come out on
the calculator, just because we figured out that, if it was minus two, then it wouldn’t
work, yeah, because then everything would be over zero.
I: So, are you surprised that the calculator produced this [expanded form of Expression
5: 3x4 þ 11x3 $ 25x2 $ 23xþ 10 ] for this particular expression [original Expression

5: x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ
xþ2ð Þ ].

A: No, but also, like, I don’t know what to expect because it’s just that one thing that
wouldn’t work I think, that one term that wouldn’t fit in, minus two. Because it would
be over zero [referring to Expression 5]. But it could be that somehow if you put in
minus two, that this one [Expression 3] is zero too. So, it could be that my rule isn’t
necessarily correct, that the minus two wouldn’t work.
I’m saying that if the minus two was incorporated here [Expression 3], if I worked it
out, like I could even do the, what’s it called, what’s that called the second…?
I: The substitution key.
A: Yeah, the substitution, like if I put minus two there [Expression 3], that might
equal, like this [Expression 5] I know would equal zero… just ‘cause it’s over zero
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[Expression 5], but it could be that this one [Expression 3] equals zero too, expression
3, would equal zero as well, so that wouldn’t even be right, the conjecture that I made.
I: What was that conjecture again?
A: That uh, minus… the only term [value of x] that wouldn’t work for my theory that
they [Expressions 3 and 5] were equal to each other, is minus two.
What I’m saying is that as far as I know, it is very possible that if I work this
[Expression 3] out, with minus two incorporated into it, that that would equal zero
too, which is based on the fact that they [Expressions 3 and 5] have always been
equivalent, that the calculator didn’t show anything.
I: Do you want to try? Test your theory with the calculator on number three.

At this moment, Andrew introduced the task of evaluating for x = −2 the different
syntactically equivalent forms of Expression 5 (the original expression, the factored and
simplified form, and the expanded form). Seemingly, Andrew was wondering what would
happen when evaluating the equivalent expressions at the restriction: Do they inherit the
restriction from Expression 5?

Andrew used the CAS to evaluate Expression 3 for x = −2 and got −84. Then, he
proceeded to consider Expression 5. He had already found its domain restriction for x = −2
and the undefined value in that case. However, he was not sure about the result that he would
obtain by using the CAS evaluation technique:

A types
x2 þ 3x$ 10ð Þ 3x$ 1ð Þ x2 þ 3xþ 2ð Þ

xþ 2ð Þ x ¼ $2j
" #

I: Don’t hit the enter button yet, what do you think is going to happen?
A: I think it’s gonna be minus 84. [A hits the button and obtains “Undefined”.]
A: Well that’s what I think it is. That is just what I thought. I just didn’t think the
calculator would show it… I thought it was going to be like that, that’s what I figured
out it should be, undefined, but I didn’t think the calculator would show it.

Then, Andrew evaluated the other syntactically equivalent expressions at x=−2. Table 6
shows the results obtained.

This task, which was not considered in the original design of the interview, could be
described as a spontaneous confrontation of the establishment and corroboration of the
syntactical equivalence of Expressions 3 and 5 (they denote the same rational fraction)

Table 6 CAS evaluation of the expressions (both rational and polynomial) syntactically equivalent to
Expression 5 (at x=−2)

Expression Value at x=−2 (using the CAS
evaluation technique)

Original Expression 5: x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ
xþ2ð Þ

Undefined

Original Expression 3: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ −84
Expanded form of expressions 3
and 5, obtained by using CAS:

3x4 þ 11x3 $ 25x2 $ 23xþ 10 −84

Factored form of expressions 3 and
5, obtained by using paper and pencil:

x$ 2ð Þ xþ 5ð Þ 3x$ 1ð Þ xþ 1ð Þ (−84) Andrew considered this
evaluation, but did not explicitly
carry it out during the interview.
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versus the fact that these expressions take on different values at the restriction (they do not
denote the same function).

At the beginning, the restriction was incorporated only as an exception to the equality of
the values of the expressions. But, seemingly at this moment of the interview, Andrew was
exploring whether the restriction was inherited by the syntactically equivalent forms (i.e., the
original expression, the factored and simplified form, and the expanded form) and, thus, if
the equality of the values would remain for x=−2. In Andrew’s words, “it is very possible
that if I work this (Expression 3) out, with minus two incorporated into it, that that would
equal zero too, which is based on the fact that they (Expressions 3 and 5) have always been
equivalent.”

The CAS evaluation technique allowed Andrew to realize that the restriction is not
inherited through forms syntactically equivalent: both Expression 3 and the expanded and
factorized forms of Expression 5 do not inherit the restriction; in fact, all three take the same
real value: −84 (in fact, they denote the same function). The information being provided by
the CAS seemed pivotal to the development of Andrew’s understanding of the extent to
which restricted values travel through the syntactic processes. The epistemic value of the
CAS evaluation technique was central to Andrew’s technological reflections on the equiv-
alence of the expressions. In parallel with the solving of this spontaneous task (i.e.,
evaluating for x=−2 the different syntactically equivalent forms of Expression 5), Andrew
was exploring this technique in itself, comparing it with the other techniques that he had
used. The CAS evaluation technique allowed him to differentiate the syntactically equivalent
expressions (equivalent rational fractions that include polynomials), when dealing with the
restriction (i.e., treated as rational and polynomial functions). As Andrew said, “the calcu-
lator did show it.” Table 7 presents our analysis of Andrew’s spontaneous exploration of the

Table 7 CAS evaluation for exploring the values of the forms that are syntactically equivalent to a given
rational expression (whose simplified form corresponds to a polynomial), when it is treated as a rational
function

Technique Evaluate the rational expression at the restriction.

Evaluate the corresponding expanded polynomial expression at the restriction.

Evaluate the corresponding factorized and simplified polynomial expression at the restriction.

Technology At the restriction, the rational expression is undefined; but the corresponding expanded and the
factorized polynomial expressions are well-defined and their values are the same.

The different syntactically equivalent expressions (rational expressions and polynomials) do not
necessarily have the same domains of restriction.

Type of task: exploring the numerical values of the different syntactically equivalent expressions by evalu-
ating them at the domain restriction of rational Expression 5

Table 8 Results obtained by applying the CAS equivalence test

Case What the CAS displays

Expressions that are equivalent without any
restrictions

True

Expressions that are equivalent with
restrictions

True

Expressions that are not equivalent The same equality between the two expressions that was entered
at the input line
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effects of the restrictions on the forms syntactically equivalent to Expression 5, by using the
CAS evaluation technique.

6.5 Making explicit the conflict between the two perspectives on equivalence and a first
articulation of the differences

The interview continued with Part IV: Testing for equivalence without re-expressing the form
of an expression—using a test of equality. For this part of the interview, we had designed
some tasks that required the student to make explicit and confront the differences between
the two perspectives on algebraic equivalence. For the solution of these tasks, we introduced
two CAS commands: the equivalence test and the numeric equality test.

The CAS equivalence test allows one to discern whether two given expressions (consid-
ering the rational fractions that they denote, in fact) are syntactically equivalent. This test
does not take into account the domain restrictions of the expressions (i.e., it does not takes
into account the rational-function-related aspects). To apply this test, the two given expres-
sions are typed into the calculator with an equal sign between them. The result is obtained by
pressing the Enter key. For example, for Expressions 3 and 5, the equality introduced into

the CAS calculator is: 3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ ¼
x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ , and the

result obtained with the CAS is: True.
Table 8 shows the results that can be obtained by applying the CAS equivalence test to

different expressions that can be equalized.
The CAS test of numeric equality evaluates the equality of the values taken by any

two given expressions (considering the rational functions that they denote) evaluated
for specific values of x. For instance, introducing the equality of Expressions 3 and 5,
followed by the value for evaluating the expressions (x=− 2 in this case):

3x$ 1ð Þ x2 $ x$ 2ð Þ xþ 5ð Þ ¼
x2þ3x$10ð Þ 3x$1ð Þ x2þ3xþ2ð Þ

xþ2ð Þ

!!!!x ¼ $2, produces theCAS result: False.

Table 9 shows the results that can be obtained by applying the CAS test of numeric
equality to different expressions that can be equalized. In the case of expressions that are
syntactically equivalent but which have a restriction (as for Expressions 3 and 5), the CAS
results obtained by applying the equivalence and the numeric equality tests would seem to be
“contradictory.” For the restriction, when using the numeric equality test, the result that is
obtained is “False” (the corresponding functions have different values there), whereas when
using the equivalence test, the result is “True” (the corresponding rational fractions are
equivalent). In working on the tasks of this part of the interview, Andrew was faced with this
“contradiction.” It was a critical moment for him, once more, one for which the CAS was
again instrumental, semiotically speaking.

He typed the equality of Expressions 3 and 5 (i.e., the CAS equivalence test) and pressed
Enter. The calculator returned “True”:

Table 9 Results obtained by applying the CAS test of numeric equality

Case What the CAS displays

Expressions that have equal values at the given value of x True

Expressions that do not have equal values at the given value of x False

Expressions that are both undefined at the given value of x Undef=Undef
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A: That’s what I expected… It [the calculator] is still not showing minus two.
Well, I don’t know, I can’t explain why all of this works, but when it’s expanded it
equals the same thing. So, I figure that, I don’t know if it [the calculator] expands them
first and then does it. It [the calculator] either expands them both to see if they are
equivalent, maybe. Then it [the calculator] sees if they come out to be the same
expression.

This result confirmed what Andrew had already obtained by applying the factoring and
expanding techniques, with and without CAS. As Andrew said, this CAS technique neglects
the domain restriction of Expression 5.

A: It probably… I figure that it [the calculator] knows we can put them in the same
form, like it expands them so they are both in the same form, and you can tell, and
when you expand them they come out to the same expression and you can’t tell that
the minus 2 doesn’t work.

Then, by applying the numeric equality test for x=−2, Andrew obtained “False” and
pointed out the following:

A: I had that before… there it is… negative 2. It [the calculator] realizes! It’s not as
smart as me… the calculator realizes that… Now the calculator realizes that the uh
second, um expression, once it becomes over zero, that’s undefined, and the first
expression stays the same. Yeah, so it realizes it’s false.

Andrew explained these contradictory results as follows:

A: Yeah, at first [he is referring to the result of the test of equivalence] it’s saying that
any value of x would be true, that any value of x can be substituted and they would be
equivalent.
But, like this just proves, that when minus two is incorporated that it’s not true [he is
referring to the result of the test of numeric equality for x = −2], in this form at least
[original expression 5]. Because once it’s expanded, it [the calculator] saw they were
still equivalent, and it didn’t. I guess in different forms it’s not true, but in this
particular form [original expression 5] it is.

From our theoretical point of view, in this part of the interview Andrew constructed a first
articulation of the differences and contradictions of the results obtained through the syntactic
and numeric techniques: the numeric equivalence of two algebraic expressions could be
established in a general manner (for every value of x, not just for a finite set of values) by
means of syntactic techniques, using both paper and pencil and CAS. For example, through
expanding and factoring techniques, Expressions 3 and 5 could be rewritten as the same
expression. However, numeric equivalence requires considering the restrictions. At the
domain restriction for Expression 5, these expressions do not have the same value.

This articulation allowed Andrew to provide an explanation for the contradiction between
the results from the numeric equality and equivalence tests. Andrew explained the result
obtained from the equivalence test by appealing to syntactic techniques, in his words: “it [the
calculator] knows we can put them in the same form, like it expands them so they are both in
the same form, and you can tell, and when you expand them they come out to the same
expression [the same rational fraction].” But, as Andrew pointed out, it is necessary to
consider the domain restriction of Expression 5. In Andrew’s words: “when minus two is
incorporated, it’s not true [i.e., they are not the same rational function].”

Table 10 presents a theoretical analysis of the techniques and the technological discourses,
both numeric and syntactic, that were articulated in the considerations and reflections made by
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Andrew during this part of the interview. These technological reflections take into account the
double complication of handling different forms of expressions (factored and simplified and
expanded forms) and dealing with both perspectives on algebraic equivalence: the numeric and
the syntactic (considering the denoted rational function and the denoted rational fraction). It is
noted that these conscious reflections on the part of Andrew came into being over time through
a variety of semiotic means of objectification: through his interactions with the CAS and paper-
and-pencil tools, as well as through the mathematical formulations, discourse, and particular
expressions that were embedded within the tasks. Even if the role of the CAS is highlighted,
these various other constituents played significant roles.

The interview continued, now touching upon a complementary aspect of algebraic equiva-
lence: non-equivalence. The task was to apply the equivalence test to Expressions 2 and 3:

Enter directly into your calculator’s entry line the equation formed from the two given
Expressions 2 and 3:

x2 þ x$ 20
$ %

3x2 þ 2x$ 1
$ %

¼ 3x$ 1ð Þ x2 $ x$ 2
$ %

xþ 5ð Þ

1.What does the calculator display as a result?
2. How do you interpret this result?

Andrew anticipated that the result of the equivalence test would be “False”:

Table 10 Andrew’s numeric and syntactic perspectives on determining the equivalence of rational expres-
sions and polynomial expressions

Numeric perspective (the expressions
denote rational functions)

Syntactic perspective (the expressions
denote rational fractions)

Technique Determine the restrictions, i.e.,
establish the common domain
of the expressions.

Rewrite the expressions in a common
algebraic form, in a factorized or
expanded form.

Compare the expressions over the
common domain.

Compare the rewritten expressions
(term by term or factor by factor).

Evaluate the expressions for several
values of the common domain.

Technology If the expressions take on the same
values for a set of values, they can
take on the same values for all
values except for the restriction(s)
(i.e., for any value of the common
domain). Their numeric equivalence
is conjectured.

If the expressions can be rewritten as the
same expression (in a factorized or
expanded form), they are syntactically
equivalent.

Technology articulating
both perspectives

Numeric equivalence of algebraic
expressions can be established by
means of syntactic techniques.
However, at the restrictions, numeric
equivalence does not correspond to
the syntactic equivalence of the
expressions; numerical evaluation is
necessary in this case.

Numeric equivalence of algebraic
expressions can be established by
means of syntactic techniques.
However, at the restrictions, numeric
equivalence does not correspond to the
syntactic equivalence of the expressions;
numerical evaluation is necessary in
this case.

Type of task: establishing the equivalence of polynomial expressions and rational expressions
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A: I think it’s going to be false… Because of the results I’ve gotten before.
When expressions 2 and 3 were expanded, they weren’t equal.
When I factored them out myself not using the calculator, they weren’t equal.
When I substituted in numbers, they weren’t equal.
[So] It would be, I believe it would be false.

Andrew had obtained the expanded forms and the factorized forms for Expressions 2 and
3 (considering them as polynomials), with paper and pencil (Part II) and by using the CAS
(Part III), respectively. He had also found that these expressions (considering them as
polynomial functions) took on different values when he evaluated them for a few values
of x (Part I).

However, when he applied the CAS equivalence test to these expressions (by entering
their equalization), the CAS returned the same equality. Very surprised at this result, Andrew
looked for a mistake he may have made in the typing of the expressions:

A: I don’t know what I did wrong.
A: It [the calculator] re-writes that… is that what’s supposed to happen?
I: Yeah, actually that’s the way it works.
A: I was expecting to get like “False” or “Undefined” or something like that…
“Undefined”… not necessarily “Undefined” but something that showed me that it’s
not true, to say “False”. I was expecting to see “False” as the answer, but I guess when
it’s re-written it just means that it’s totally unreasonable!

Andrew tried to explain this CAS result that was obtained by applying the equivalence
test to the equality of Expressions 2 and 3 (which he knew were not equivalent) by
contrasting it against the obtained result for Expressions 3 and 5 (which were equivalent):

A: Basically [I mean] that they’re not equal to each other.
So, what I assume the calculator does… is to expand them and put them in the same
form. Like I said before, I assume the calculator expands them and then compares.
That’s why I was saying it was true for Expressions 3 and 5, it [the calculator]
expanded them and that’s why the x+2 doesn’t come into consideration. So, I think
that when it expanded them [referring to Expressions 2 and 3] it sees that they are in
expanded form, but they’re not equal to each other…

Andrew assumed that there were no values of x for which Expressions 2 and 3 took on
equal values:

I: When you say equal each other, do you mean… equal regardless of the values of x?
A: I don’t know, I don’t know if for any value of x, they would be equal. I would
assume not.

At this moment, the interviewer referred back to the initial part of the interview:

I: Well, this is a good time to refer back to the first page of the activity [Part I].
You said, if I understand you correctly, that when the calculator displays the same
equation back, it tells you that it’s never equal for any values of x. So…
A: But I… Yeah…
I: So if you go back here [table of values for Expressions 2 and 3], what is it… 2 and 3,
for 2 and 3 are there any values that actually make them equal?
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A: Oh yeah, I didn’t realize that! Yeah, 1
3 and -5. So I would use the substitution

button.

Andrew verified these results using the numeric equality test. He typed:

x2 þ x$ 20
$ %

3x2 þ 2x$ 1
$ %

¼ 3x$ 1ð Þ x2 $ x$ 2
$ %

xþ 5ð Þ
!!x ¼

1
3
;$5

& '

and, by pressing the Enter key, he obtained “True.” He was not sure how to interpret this
result. It is important to remark that by accepting this, it implies admitting that values of x do
exist for which Expressions 2 and 3 take on the same value, even if “they weren’t equal”!
(i.e., they were not equivalent in terms of both the numeric and the syntactic perspectives).
He said the following:

A: I would assume that, I don’t know, obviously the calculator can do this, I guess, but
I would assume it would come with the numbers, like I would think that we were
saying that in some situations it is sometimes true. I would figure that it would tell you
that…
As far as I was concerned I didn’t really take note of this until we got further… As far
as I was concerned these two [Expressions 2 and 3] weren’t equal to each other no
matter what, especially when the calculator showed me.

Andrew finally established his interpretation of the equalization of Expressions 2 and 3 as
follows:

A: Expression 2 can be equivalent to Expression 3 when 1
3 is substituted, but

Expression 2 is not equivalent to Expression 3 just in general.
I: What do you mean by in general?
A: Like you’re putting it in the same form. So, if they’re equivalent, they should be the
same, like identical, like 3 and 5 were and 2 and 3 aren’t. So, like in general form
they’re not equivalent, but for certain numbers they are.

The tasks for this last part of the interview—though we include just the first of them in this
analysis—are related with another issue, one concerning a specific use of the “equal sign” in
algebra: the study of the theory of equations. To solve these new tasks, Andrew applied his
mathematical knowledge and techniques for studying the equivalence of algebraic expressions.
He found that two algebraic expressions could take on equal values for some specific values of
x, even if they were not equivalent (neither syntactically nor numerically). By solving the tasks
of this part of the interview, and by applying the equivalence and numeric equality tests,
Andrew made explicit his resolution of the “contradiction” between the syntactic equivalence
and the numeric equivalence of the given expressions. Also through these tasks, Andrew was
able to begin to explore themeanings of some complementary aspects of equivalence: equations
and their solution. In this later exploration, the syntactic and numeric techniques that were
developed for studying equivalences were enriched and deepened to another level.

7 Discussion

The question that was central to this study was the following: What is the nature of the
technological discourse that students develop in the process of articulating the syntactic
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(form) and numeric (functional) perspectives when grappling with the equivalence of
polynomial and rational expressions in a task-based, CAS and paper-and-pencil, envi-
ronment? In this article, we have described in detail the interview-supported experience
of a 10th-grade student in the process of confronting and making sense of a particular
cultural conceptual object, that of the double perspective on algebraic equivalence. The
analysis highlighted the way in which Andrew’s refining and gradual differentiating of
his notion of the equivalence of polynomial and rational expressions unfolded over the
course of his work with the designed tasks. The discussion of this concluding section of
the paper will revisit what we believe were four pivotal moments of that process, and
in discussing these moments we illustrate the central roles played by the interviewer,
student, and cultural tools in making meaning for conceptual objects.

The cultural conceptual object that was the aim of this research on mathematical learning
was the double perspective on algebraic equivalence, that is, the syntactic and numeric
perspectives that underlie interpretations of equivalence in the study of polynomial and rational
expressions. As we have pointed out, generally these two perspectives remain implicit or even
confounded, the one with the other in school algebra. In the mathematical analysis of the theory
underpinning this double perspective, which we presented above, we outlined distinctions
between the two mathematical objects (rational fraction and rational function) that give rise
to each of these perspectives and emphasized that while a syntactic perspective on equivalence
holds when polynomial and rational expressions are viewed in one way (i.e., as rational
fractions), a numeric perspective needs to be integrated in order to take into account possible
domain restrictions when the polynomial and rational expressions are viewed as functions.
Through the interview, as a result of his solutions and reflections on the proposed tasks and by
means of the CAS and the paper-and-pencil tools and techniques, this cultural object was made
“apparent” to Andrew (in the sense of Radford, 2006).

The CAS tool that was central to the design of the tasks for the study (i.e., the TI-92
Plus) is one that reflects the underlying mathematics in particular ways. Through the
CAS techniques of expanding, factoring, and simplifying, the polynomial and rational
expressions are treated syntactically. But they are also treated numerically, as when a
CAS user, perhaps taking into account any restrictions, indicates an evaluation to be
made with specific values. As was seen earlier, the CAS Equivalence Test involved the
syntactic perspective, while the CAS Numeric Equality Test involved the numeric
perspective. Thus, the CAS tool, which affords the possibility of considering both
perspectives on equivalence, was a vital piece in the collection of signs and objects,
the semiotic means of objectification to be used to make our mathematical intentions
apparent (see Radford, 2003, 2006, for further theoretical treatment of semiotic means of
objectification). As will be seen from the discussion that follows, this tool—a reflection
of the mathematical cultural history of the topic under study—was the scarlet thread
running throughout the process of Andrew’s coming to differentiate and to articulate the
two perspectives on equivalence.

As suggested by our analysis of the unfolding of the study, Andrew’s initial approaches to
testing for equivalence included formulating conjectures based on a small sample of
numerical values, followed by a verification that involved the paper-and-pencil expanding
technique. He brought this knowledge to the study with him. It was part of his past
history. However, his techniques and technological discourses coexisted, without being
explicitly differentiated. For Andrew, the applied techniques did not belong exclusively
to a unique perspective. In fact, for him, differentiated perspectives on equivalence did
not exist. They were just pieces of mathematical knowledge and resources for solving
the same type of tasks: establishing the equivalence of algebraic expressions. Moreover,
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because he did not take any particular notice of the restriction of the denominator of
Expression 5, his techniques and technological explanations led him to conclude that
Expressions 3 and 5 were equivalent and equal for all values. Therefore, to provoke a
first pivotal moment, the interviewer (it could have been the teacher in a classroom
situation) decided on the spur of the moment to ask: “Is there any value of x that would
not be permissible as a replacement value for x in Expressions 3 and 5?”. When
Andrew responded that he thought every number would work, it was suggested that
he take note of the x+2 denominator in Expression 5 in thinking about the question
that had been put to him.

That question, to which Andrew responded: “Negative 2, … But, well, I should have seen
this before too. I don’t know why I didn’t,” led to a cascade of significant actions on Andrew’s
part. He used the CAS tool to see what it would produce when he asked it to expand and
simplify the rational expression that was Expression 5—wishing to test whether the CASwould
in some way indicate the domain restriction of −2 that he now realized was an important part of
judging the equivalence of Expressions 3 and 5. But the CAS did not indicate the restriction; it
simply expanded and simplified the rational expression, producing the same result that Andrew
had obtainedwith paper and pencil. We interpret this instance as being a second pivotal moment
for Andrew. He came to realize that this mathematical tool (the CAS) carried out syntactic
transformations with no heed to possible numerical restrictions.

So Andrew decided to try something else—in fact, he created a task for himself
that had not been part of the designed task sequences. He spontaneously used the
CAS evaluation tool to see what numerical result would be obtained if the CAS were
to evaluate, at the restricted value of x=−2, the various syntactically equivalent forms
for Expression 5 and the initial and expanded forms of Expression 3. He felt the need
to test whether the restriction, which when substituted into the initial form of the
rational Expression 5 had yielded the CAS result of “Undefined,” would in some way
be inherited by the other simplified forms of the rational expression. Clearly, they
were not. The evaluations of the other syntactically equivalent forms at x=−2 had all
yielded −84. This was a third pivotal moment in Andrew’s coming to differentiate and
to refine the two perspectives on equivalence. The rational Expression 5 did not yield
the same value at the restriction as did the other expressions to which it was
syntactically equivalent. So the idea that syntactical equivalence might not necessarily
be the same as numerical equivalence was beginning to emerge.

The fourth pivotal moment, which reflects to a certain extent the role that the task
design played in Andrew’s coming to articulate the double perspective on equivalence,
occurred soon afterward. With our introduction of the CAS Equivalence Test that
yielded “True” when input with Expressions 3 and 5, and the CAS Numeric Equality
Test that yielded “False” when input with the same two expressions and the evaluation
of the x variable at −2, we had intended both to provoke a definitive confrontation
regarding the equivalence of the polynomial and rational expressions and to spark
attempts at explaining and thereby gradually refining the technological-theoretical
discourse. The conflict produced by these two results brought the articulation of the
two perspectives to the fore for Andrew. The conflict he faced had originated in the
“contradictions” obtained by applying the syntactic techniques he knew (factoring and
canceling, and expanding) for justifying the numeric equivalence of expressions
(conjectured by the evaluating technique). For the restriction, his techniques and their
corresponding technological discourses had given an “exception.” However, to explain
the contradictory results obtained by the CAS techniques Equivalence test and Numeric
equality test, he had to re-elaborate his initial technological explanations of the relations
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between the results obtained through expanding, factoring and canceling polynomials
and rational expressions and the results obtained through evaluating the corresponding
polynomial and rational functions. Andrew articulated the differences and contradic-
tions by establishing distinctions between the numeric and the syntactic techniques, as
well as between their corresponding conceptual elements (technologies): numeric equiv-
alence of algebraic expressions can be “proved” by rewriting them and showing that
they are the same (syntactic equivalence). However, at the restrictions (numerical
values of x where the rational expressions are not defined), numeric equivalence does
not correspond to the syntactic equivalence of the expressions; numerical evaluation is
necessary in this case.

Throughout this study, we have tried to show both the way in which Andrew came to
make sense of the double perspective on algebraic equivalence that was at the heart of the
study, and also the way in which this conceptual object was made apparent to him: by a
complex interaction of designed task sequences, interviewer questions, CAS tool, and not
least of all the student’s own curiosity and spontaneous reflection and actions. Our analysis
builds upon, and provides further evidence for, the theoretical approach developed by
Radford (2006):

Through words, artifacts, mathematical signs, and gestures—i.e., through semiotic
means of objectification—the mathematical object … [was] made apparent to the
students. In order to see it, the students underwent a process of objectification in the
course of which their subjective meanings were refined. … Through the design of the
lesson and the teacher’s continuous interpretation of the students’ learning, … the
students’ subjective meaning are pushed towards specific directions of conceptual
development. (pp. 57–58)

We began the article by proposing that the tasks we designed for this study offer an
arena in which it is possible to study the differences between “form” and “function”
(Cuoco, 2002), that is, between the syntactic perspective and the numeric perspective.
From our point of view, the presented results corroborate the importance of the gradual
study of these relations and differences, which generally remain implicit or ignored but
can constitute very important opportunities for conceptual reflection in school algebra.
But our results also suggest how potentially useful a CAS tool—when carefully
integrated into the design of the tasks—can be in the objectification of key algebraic
concepts.

Acknowledgments We express appreciation to our co-researchers André Boileau and Denis Tanguay, to the
student who participated in the research, to the teachers and administrators of his school, and to those who,
along with C. Kieran, A. Boileau, and D. Tanguay, collaborated in designing the task sequences: F. Hitt, J.
Guzmán, and L. Saldanha. We also acknowledge the support of the Social Sciences and Humanities Research
Council of Canada (Grant #410-2007-1485). The majority of this article was conceptualized and written while
Armando Solares was a post-doctoral fellow at the Université du Québec à Montréal, working with Carolyn
Kieran and her research group. We also wish to thank the reviewers of an earlier draft of this article for their
helpful suggestions.

Appendix

Equivalence of expressions
Part I (with CAS): Comparing expressions by numerical evaluation
I (A) The table below displays three algebraic expressions and two possible values for x.
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Using the two given values of x (i.e., 1
3 and –5) and two others of your own choosing,

calculate the resulting values for each expression by means of the evaluation tool of your
calculator [i.e., the “with operator,” (|)].

Important: Proceed one complete row at a time when filling in the table.
Record your choice of additional x values in the table’s top row, and record the results in

the appropriate cells below.

For x= 1
3 −5

Expression Result Result Result Result

2. x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ
3. 3x$ 1ð Þ x2$x$ 2ð Þ xþ 5ð Þ

5. ðx
2þ3x$10Þð3x$1Þðx2þ3xþ2Þ

ðxþ2Þ

I (B) Compare the results obtained for the various expressions in the table above. Record
what you observe in the box below.

I (C) Reflection question:
Based on your observations with regard to the results in the table above (in I(A)), what do

you conjecture would happen if you extended the table to include other values of x?

Part II (with paper and pencil): Comparing expressions by algebraic manipulation
II (A) Based on your observations in Part I A, make a conjecture as to which of the above

set of given expressions might be re-expressed in a common form?

II (B) To test your above conjecture by means of paper and pencil algebra, re-express the
given expressions below in another form (not the expanded form). Show all your work in the
table’s right-hand column.

Given expression Re-expressed form of given expression

2. x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ
3. 3x$ 1ð Þ x2$x$ 2ð Þ xþ 5ð Þ

5. ðx
2þ3x$10Þð3x$1Þðx2þ3xþ2Þ

ðxþ2Þ
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II (C) In Part I C, you made some conjectures based on numerical evaluations of
expressions. Explain in what way the algebraic manipulations in Part II B supported (or
not) each of those conjectures.

For any conjectures of Part I C not supported by your algebraic manipulations in Part IIB,
how do you account for the discrepancy?

Part III (with CAS): Testing for equivalence by re-expressing the form of an expression—
using the EXPAND command

The left-hand column of the table below contains the expressions from the previous
lesson. Using your calculator, fill in the right-hand column with the expression produced by
the EXPAND command (see F2 menu in the calculator).

Syntax: EXPAND (expression)

Given expression Result produced by EXPAND

2. x2 þ x$ 20ð Þ 3x2 þ 2x$ 1ð Þ
3. 3x$ 1ð Þ x2$x$ 2ð Þ xþ 5ð Þ

5. ðx
2þ3x$10Þð3x$1Þðx2þ3xþ2Þ

ðxþ2Þ

Part IV (with CAS): Testing for equivalence without re-expressing the form of an
expression—using a test of equality

It is possible to explore whether two expressions are equivalent without having to re-
express their forms. An alternative approach is to use a CAS test of equality:

IV (A) Enter directly into your calculator’s entry line the equation formed by expressions
3 and 5:

3x$ 1ð Þ x2$x$ 2
$ %

xþ 5ð Þ ¼
x2 þ 3x$ 10ð Þ 3x$ 1ð Þ x2 þ 3xþ 2ð Þ

xþ 2ð Þ

1. What does the calculator display as a result?

2. How do you interpret this result?
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3. Use your calculator’s “with operator” (|) to replace x by –2 in the above equation.
Interpret the result displayed by the calculator.

IV (B) Enter directly into your calculator’s entry line the equation formed from the two
given expressions 2 and 3:

x2 þ x$ 20
$ %

3x2 þ 2x$ 1
$ %

¼ 3x$ 1ð Þ x2 $ x$ 2
$ %

xþ 5ð Þ

1. What does the calculator display as a result?

2. How do you interpret this result?
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