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whnot 12 THE 'SURPRISE FALTORY

5 Boam

Any CAS response that is not expected by students
The unexpected can occur when students are
Exploring a new mathematical idea,
Verifying paper-and-pencil work,
Testing conjectures, ...

Of course, all surprises that a CAS may yield are
relative:

Relative to students’ past mathematical experience
and knowledge,

Relative to their ability to notice something
unexpected in the CAS response, ...



What does a surprising CAS response call
for?

Trying to make mathematical sense of it,
Trying to fit it with one’s existing mathematical ideas,

Seeking consistency with one’s paper-and-pencil
techniques,

Testing new conjectures arising from the surprise, ...



The traditional paper-and-pencil medium
cannot, by its very nature, yield surprises In
algebra.

The paper-and-pencil work that algebra
students produce springs from their
iIntentions and from their existing knowledge.
Thus, there is no surprise agent.

Here, CAS technology has something unique
to offer.



Artigue (2002) has argued that CAS tasks
can capitalize on “the surprise effect that
can occur when one obtains results that do
not conform to expectations and that can
destabilize erroneous conceptions” (p. 344,
my translation)



STUDENTS ATTENDING TO CAS SURPR!SE_S_;

But how to create a classroom environment that
can capitalize on the ‘surprise’ factor that CAS can
yield?
At the very least, our research suggests that it
requires:

Appropriate tasks,

Adequate time for students to think about their work,

Both students and teacher contributing to the
mathematical talk related to the tasks.



%
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Two examples of tasks that were designed to
create elements of surprise —

One where CAS is a tool for exploring patterns,
Another where CAS is a tool for verifying

— but both inviting technical and theoretical
learning in algebra.

Video extracts of a class of Grade 10 students
and their teacher, both contributing in their own
ways to the mathematical discussions that
unfolded during each task activity.



Activity 6

FACTORING THE x" — 1 FAMILY OF
POLYNOMIALS



Name: Date:

Activity 6: Factoring
Part I (Paper & pencil, and CAS): Seeing patterns in factors

1. (a) Before using vyour calculator, try to recall the factorization of each algebraic
expression listed in the left column of this table:

ﬂ Factorization using paper and pencil Verification using FACTOR (show result ﬂ
displayed by the CAS)
a’ —b® =
a’ —bh' =
x? —1=
P —1=

Classroom discussion of Part 1, 1a

1. (b) Perform the indicated operations (using paper and pencil)

(.\' - ])(,\' 4 l)=

(- I)(\': + X + l)=

2. (a) Without doing any algebraic manipulation, anticipate the result of the following

product:

(x - l)(\"‘ +x? + x + 1)=

2. (b) Verify the anticipated result above using paper and pencil (in the box below), and
then using the calculator.




2. (¢) What do the following three expressions have in common? And, also, how do they differ?

¥
[

(,\‘ - I)(,\' + I), (x- l)(_\‘2 + X+ l) and (.\' - 1)(\’3 +x7 4+ x4+ 1).

2. (d) How do you explain the fact that the following products result in a binomial: two binomials, a binomial
with a trinomial, and a binomial with a quadrinomial?

Classroom discussion following Question 2d

2. (¢) On the basis of the expressions we have found so far, predict a factorization of the expression x° —1.




Part II: Toward a generalization (activity with paper & pencil and with calculator)

II(A) 1. In this activity each line of the table below must be filled in completely (all three
cells), one row at a time. Start from the top row (the cells of the three columns) and work

your way down.

If, for a given row, the results in the left and middle columns differ, reconcile the two by

using algebraic manipulations in the right hand column.

Factorization using paper

and pencil

Result produced by
FACTOR command

Calculation to reconcile the
two, if necessary

x° —=1=
xT—1=
xt—1 =
x> —1=
¢ —1=

I[1.(A).2. Conjecture, in general, for what numbers 7 will the factorization of x" —1:
i) contain exactly two factors?
ii) contain more than two factors?

111) include (x + 1) as a factor?

Please explain:

Classroom discussion of Part II A




X*- 1 THAN WAs BEIN?G INDUCED BY THE
GENERAL RULE THAT WAS JUST LEARNED:




SO WHAT DID STUDENTS LEARN FROM
THIS FIR T CAS SURPRISE REGARDING

The factors produced for a given algebraic
expression may not be unique — different
approaches may yield different factors;

While an expression may be correctly factored,
that factorization may not be complete.



THE NEXT SURPRISE WAS RELATED TO THE
“CONJECTURING” TASK, WHICH WAS

PRESENTED AFTER THE “RECONCILING”
WORK INVOLVING X? - 1 THROUGH TO X® - 1

I1.(A).2. Conjecture, in general, for what numbers n will the factorization of x" -1:
i) contain exactly two factors?
1) contain more than two factors?
iif) include (x+1) as a factor?

Please explain:
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('l
Peter
("l

Peter

(g

‘Two factors” means two separate sefs of brackets, right’

Veal

The only time 1t containg two factors 18 when it 15 odd, T think, which means it can be, [pauge] like.
our pattern can't be broken down anymore. *Cause it always ends up bemg all posttrve. And ub,
then, because, it's sort of hard to explam.

When the exponent 13 [pavse], when the exponent 1 an even number you'll have more than fwo
tactors, but when the exponent 15 not an even unmber, you'll have exactly two factors all the time

, i i
Veah, [Types Factor (x - 1) mto the CAS
Yeal, because any tume vou plug i an odd number as the exponent power, it's ul, the calculator

, . b
always stays at the most stmplitied [pause] and [Types m Factor (x” - 1); the CAS dugplays

Ty 61
G-1 +a+)(E +57+1)]
And, no!!!a look of utter surprise on Chug's face]




IL.(A).2. Conjecture, in general, for what numbers » will the factorization of x" -1:
i) contain exactly two factors?

ii) contain more than two factors? |
i) include (x+1) as a factor? o e M At
Please explain: Rok ot W 4w
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AND THE ‘EUREK

Chris: But, I think as soon as you get past nine or whatever, you start running into problems. ..

Peter: Try sixty; sixty is divisible by a lot [Chris types on calculator]

[Silence...]

Chris: Yeah, I think it has to do with how many numbers can go into it.

Interviewer; How many numbers can go into 1t?

Chris: Like, sixty 1s divisible by one, it’s divisible by two, it’s divisible by three, it’s divisible by four, five, six.

Peter: By four, five, six.

Chris: Not seven, [pause] not eight.

Peter: Not nine, ten, twelve.

Chris: But, it’s just, like uh, [pause] at a certain [pause], prime numbers? [pause] So, a prime number is twenty-three [he
types into the calculator] Yeah, prime numbers, that’s it. Prime numbers when it is...

Interviewer: and what are prime numbers?

Peter: Wait, what about three, five and seven.

Chris: Only divisible by itself. Three, five and seven, all work.

Peter: They are prime numbers.

Chris: Yeah, they all work.

Peter: No, but they don’t give you exactly two factors.

Chris: Yeah, they do. [Types in calculator] That’s what I'm doing [pause] three, five, seven

Peter: Yeah they do [Looks at screen]
Chris: Yeah, prime factors. And nine doesn’t work because it is not a prime factor. [Peter crosses out the answer that he

had written and writes: all prime numbers]

’ MOMENT!




SERIES OF MODIFIED CONJECTURES

WHICH LED TO A FINAL CHANGE IN THEIR

[1.(B).2. On the basis of patterns you observe in the table I1.B above, revise (if necessary)

your conjecture from Part A, That is, for what numbers n will the factorization of x" ~1:
1) contain exactly two factors?
i1) contain more than two factors?
1) include (x i l) as a factor?
Please explain: ‘-___ ~
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WHAT DID THESE STUDENTS LEARN
FROM THE SURPRISE THEY

EXPERIE CED WHEN THE CAS FACTORED

X0 - *‘1 INTO MORE THAN TWO FACTORS'?

Eventually, after much conjecture-testing:

that x” — 1 will factor completely into exactly two
factors when n is prime;

when n is a composite number, the number of
factors for x” — 1 will be more than two.



We should note, once again, that what students
learn from a given CAS surprise will be relative.

It will depend on several factors, including the
extent to which the task pursues a given issue, as
well as the mathematical experience of the pupills.

For example, one possible task extension of the
conjecture question could aim at developing the concept
that, when completely factored under the set of integers,
the number of factors of x” — 1, when n is composite, is
equal to the number of positive divisors of n.



HOWEVER, THE X° -1 FACTORING

THE “EXACTLY-TWO FACTORS”
CONJECTURE '

When students in class saw the factors that
were produced by the CAS for x° — 1:

(xX—=1)¢+x+1)(xX°+x3+1),

they wanted to know how they could produce
such factors themselves with paper and
pencil.



THIS STUDENT’S WORK ON X° — 1 HAD




HE FINALLY REQUESTED HELP FROM THE
TEACHER

He asked: “How do you get those factors?”

The teacher then suggested to the class that
they might try to “see” x° as (x°)® and thus
x2 —1 as ((x3)° — 1), which could then be

treated as a difference of cubes — which they
had already learned how to factor.



SO WHAT WERE THE STUDENTS IN THIS CLASS

BEGINNING TO LEARN FROM THIS CAS
SURPRISE REGARDING THE FACTORIZATION OF

They were learning to see within composite
exponents n a way of re-expressing them, at the
level of particular cases, so that the expression

x" — 1 might be interpreted as (x°)¢ — 1, and
factored according to a method that they were
already familiar with,

eg,x —1as(x?)3—-1,x"°-1as(x°)3-1,x8-1
as (x*)2-1, ...



ANOTHER SURPRISE WITHIN THE SAME
ACTIVITY ”
THE CAS FACTORIZATION OF X0 -

In the Reconciliation Task, all students initially
produced the following paper-and-pencil
factorization for x19 — 1, with the aim of generating a
complete factorization:

x10 — 1
= (¢ +1)0¢ - 1)
=X+ 1) x=-1(x*+x3+x2+x+1)



SURPRISE! SURPRISE!
THE CAS THEN PRODUCED THE FACTORS:

This intrigued one of the groups of students.

They wondered about the pattern in the factors for x° + 1,
with its alternating signs in the “long” factor.

They noticed that it was the same pattern as for the
factoring of x3 + 1, with its alternating signs.

Then they began to conjecture a general factorization for the
expression x" + 1.

(x + 1)(x™1—x"2+ xn3- .. - x + 1) and when this might work.

But at that moment, the class moved into the proving
segment of the activity. We will hear from this group shortly.



THE PROVING SEGMENT OF THE
ACTIVITY '

The last task of the activity was: “Prove that

(x + 1) Iis always a factor of x” — 1 for even
valuesofn,n= 2.

After working individually, or in groups, on
this task for about 10 minutes, one student
volunteered to present his “proof” at the
board.:



Paul: “Ok. So, my theory is that whenever x"-
1 has an even value for n, if it's greater or
equal to 2, that, one of the factors of that

would be x?-1, and since x°-1 is always a
factor of one of those, a factor of x4-1 is

(x+1), so then (x+1) is always a factor.”

Much animated discussion followed the presenting
of this ‘proof’ (see Kieran & Guzman, 2010).



To provoke the students,

the teacher offered the following counterexample:
“Just out of interest, what would happen if this was
x14—17? [he wrote (x'4— 1) under Paul’s (x"— 1)], to
which students answered: “(x’-1) times (x’+1).”

So the teacher wrote at the board:
(x14—1) = (x"-1)(x"+1) and then asked:
“Where does that leave your proof, Paul?”

However, rather than leaving the class stymied, this
guestion provided an opening for the group that
had been conjecturing something new:



THE GROUP’S NEW CONJECTURE ON X" + 1

33
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X0 - 172

Because they noticed the way in which the

x° + 1 factor of x'°— 1 had been refactored by the
CAS, and linked this with their previous factoring of
the sum of cubes, x3 + 1, they were able to
generate a new conjecture regarding a general rule
for factoring x" + 1, for odd ns:

X"+ 1=(x+1)(x"1-x2+ x+3-  -x+1), for n odd



This allowed them to explain, at least
partially, why for the given proving task —
including the counterexample of
x%—1=(x"-1)x"+ 1), which had been put
forward regarding Paul’s ‘proof’ [i.e., that
(x + 1) Iis always a factor of x" — 1 for even
values of n, n = 2J:

x"-1=(x"2-1)(x"2+1) for even ns;

so if n/2 is odd, then (x"2+1) will have (x+1) as
one of its factors.



The way in which the surprise factoring of

x10 - 1 led to this novel conjecture by Andrew
and his group was made possible by a
classroom environment that encouraged such
mathematical exploration and that used CAS
tools.

However this kind of generative work by
students in response to CAS surprises can be
easily thwarted by well-intentioned teachers
who prepare too much of the terrain for students
and end up giving away the punch-line.



THIS OCCURRED IN ANOTHER CLASS

While students were still working on the
Reconciliation Task, the teacher rapidly wrote

(x10—-1)=(x*=1)( x>+ 1) on the board.

He then blurted out: “The one that may give you
some trouble is the x to the 10%. | will explain why.”

He proceeded to explain at the board the
factorization x°+1 = (x+1)( x*—x3+x2—x+1), with
much hand-waving regarding the signs, and did not
let the students notice this pattern for themselves.



Activity 7

USING FACTORING TO SOLVE EQUATIONS
' THAT CONTAIN EXPRESSIONS

WITH RAD!CALS



Name:
Date:

Activity 7: Factoring and Solving Equations Involving
Expressions with Radicals

Note to student: The primary objective of this activity is that you come to view and employ factoring (taking out
a common factor) as a tool for solving equations, particularly when used in conjunction with the “zero product

theorem.”
1. Suppose you were asked to solve this equation:

S(Vx=a) +1IWa—4 = @x+ DWr =4 ()

a) How would you proceed when faced with such a “monster”? (Don’t actually solve the equation, just state
your general approach.)

1.b) Using paper and pencil, see whether you can first solve the following equation that is somewhat analogous

to the above monster:
(y-2)? -10(y-2) = y(y-2) ")
Hint: Factoring (taking out a common factor) might be useful here.

1.c) Compare your solution to equation (**) with that obtained using the calculator’s SOLVE command. If the
solutions obtained are different, verify your paper and pencil algebraic work. If the calculator produced an
additional solution to the ones you found, determine which among the paper and pencil algebraic manipulations
you used led to the loss of this additional solution. Please show all your work in the space below.

Classroom discussion of Questions 1a, b, & ¢




ISSUE: RETHINKING THE PROPERTY OF
ON BOTH SIDES OF AN EQUATION

1.b) Using paper and pencil, see whether you can first solve the following equation that is
somewhat analogous to the above monster:

G-I =y, (%)

Hint: Factoring (taking out a common factor) might be useful here.

&N -w=y
&) Qb%—\v—-—g
Sty -
¥ -—M =\
g’&_g\\s £=Q
=0
V=Q
V= "‘\




WHAT DID THE SURPRISING CAS
RESPONSE CO ISISTING OF THREE
SOLUTIONS PROVOKE WITHIN \

It had made sense to students to divide both sides
by the common factor of (y — 2).

The teacher’s focusing on the issue of “not dividing
by zero” — rather than just on the zero-product
property — exposed some limitations in students’
use of a particular equation-solving technique that
they had never before questioned.

As Mikey commented: "Then we can never divide
when there’s a variable because it's always going
to be a solution.”



TRYING TO MAKE SENSE OF THE CAS RESPONSE;
TRYING TO FIT IT WITH THEIR EXISTING !
MATHEMATICAL IDEAS |

So this CAS surprise led to students’ questioning of
when the rule of carrying out the same operation on
both sides of an equation is valid.

The students had never before had occasion to
guestion this rule — one that had always yielded
equivalent equations and the sought-for equation
solutions.



CONCLUDING BEHSHES



IN ANALYZING THE DATA OF OUR STUDY,
WE PAID CAREFUL ATTENTION TO THE
DEVELOPMENT OF BOTH TECHNIQUE

AND THEORY |N STUDENTS

We used as a framework the Task-
Technique-Theory model developed by
researchers in France in the late 1990s and
early 2000s (Chevallard, 1999; Artigue,
2002; Lagrange, 2002, 2003).



Since the mid-1990s, in France, when CAS technology started
to make its appearance in secondary school mathematics
classes, these researchers noticed that teachers were
emphasizing the conceptual dimensions while neglecting the
role of the technical work in algebra learning.

However, this emphasis on conceptual work was producing
neither a clear lightening of the technical aspects of the work
nor a definite enhancement of students’ conceptual reflection.

From their observations, the research team of Artigue and her
collaborators came to think of techniques as a link between
tasks and conceptual reflection, in other words, that the
learning of techniques was vital to related conceptual thinking.



Thus, In the examples | have used today to illustrate
the nature of CAS surprises that led to student learning,
all of the conceptual thought that they generated was in
the context of technical work:

Factoring x* — 1 more completely,

Factoring several odd-exponent examples so as to establish
when x™ — 1 will have exactly two factors,

Learning to view a composite exponent in terms of its divisors
so as to “see” more easily how it might be factored
[e.g., the case of x° — 1 being viewed as (x3)3 — 1],

Working with common factors (without losing a solution),
performing the same operation on both sides, and using the
zero-product rule to solve the equation: (y-2)° —10(y-2) = y(y-2)



THE NATURE OF THE LEARNING THAT

OCCURS

As we have reported in some of our past
publications (e.g., Kieran & Drijvers, 2006),
technique and theory co-emerge in mutual
iInteraction. With appropriate tasks and a
suitable classroom environment, technical work
can give rise to theoretical thinking; and the
other way around, theoretical reflections lead
students to develop and use techniques.



In another study, reported in Kieran and
Damboise (2007), which was a comparative
study of a CAS class and non-CAS class
iInvolving the same tasks in both classes, the
CAS class improved much more than the
non-CAS class in both technique and theory,
but especially in theory; and the sequence of
lessons was one where the technical
component was clearly to the forefront.



BUT THE USE OF TASKS THAT L___EAD TO

Our research observations suggest that an
additional component is a teaching practice that is
oriented toward assisting students’ in becoming
aware of the conceptual aspects of their technical
work in algebra within a CAS environment:

Orchestrating classroom discussion in such a way
as to draw out students’ thinking regarding the
mathematics of the task at hand, by asking for their
conjectures, their observations, their elaborations,
and their justifications.



‘| see the main role of symbolic algebra systems as
that of helping to formulate hypotheses, search for
examples and counterexamples, and in general
explore ramifications of mathematical models.

In other words, the main role of these systems is to
obtain mathematical insight.” (Kovacs, 1999, p. 43)



KOVACS:

“Computer algebra systems often can cause
pleasant surprises’. ... Due to computer algebra
systems, problems are being considered from new
points of view. ... These lead us to new discoveries
about the world of miraculous mathematical
structures.” (p. 52)

Even if Kovacs’'s comments were directed to an
audience of computer scientists, they still have a
great deal of relevance for our thinking about CAS
use with high school algebra students.

Don’t you agree?



THANK YOU

Website for access to the activities we have designed:
http://www.math.ugam.ca/apte/indexA.html
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