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In this report we analyze and discuss the role of CAS with two 10" grade students on a task
related to simplifying rational algebraic expressions. The theoretical elements adopted in this
study are based on the instrumental approach. Results indicate that CAS and a technical-
theoretical-oriented task provoked students to theorize on certain aspects of the simplification of
rational expressions, thus illustrating the role of CAS in improving specific technical-theoretical
components of algebra learning. However, the results also indicate that good task activity and
CAS may not be enough for other related technical-theoretical understandings in this domain;
the teacher’s intervention may also be necessary.

Introduction
In the past few years, many research studies have reported the potential of calculators (e.g.,
Computer Algebra Systems, CAS) in facilitating symbolic manipulation in algebra learning (e.g.,
Kieran & Damboise, 2007; Kieran & Drijvers, 2006; Thomas, Monahan, & Pierce, 2004; among
others). For instance, Kieran and Damboise (2007) point out how students who are weak in
algebra can improve both technically and theoretically by means of a CAS experience involving

the factoring of algebraic expressions such as x” + px + ¢, with p and ¢ whole numbers. Taking

into account Kieran and Drijvers (2006), it can be seen how the use of calculators and tasks that
promote the interaction between CAS and paper-and-pencil environments leads to increasing the
quality of students’ algebraic thinking.

One concept that the algebra research community considers central to algebra learning is that
of the equivalence of algebraic expressions. Kieran (2004), for example, views this concept to be
a critical component of algebraic transformational activity. Not incidentally, it is well known
(e.g., Davis, Jockusch & McKnight, 1978; Matz, 1980; among others) that students make
frequent, common and persistent errors when they try to simplify rational expressions, appearing
to neglect issues of equivalence. Some researchers have studied student thinking in this domain
within CAS environments (e.g., Ball, Pierce & Stacey, 2003; Kieran & Drijvers, 20006).
However, the majority of the reported research on algebraic syntax errors made by students has
been carried out in paper-and-pencil environments (e.g., Booth, 1984; Davis, Jockusch &
McKnight, 1978; Matz, 1980; Kirshner & Awtry, 2004; among others).

In the reports of these studies, different explanations are offered regarding the origins of
many of these errors, as well as a variety of remedial teaching treatments (e.g., the use of
different syntactical approaches) to help students overcome such errors. With respect to the use
of technology-supported instructional treatments, among the few studies we note the research of,
for example, Sutherland (1991, pp. 40-41) who points out that a computational environment
influences students’ algebraic conceptualization and helps them to overcome difficulties in the
comprehension of algebraic symbolism. Similarly, Tall and Thomas (1991) argue that a
computational environment helps students to overcome difficulties and errors due to their
interpretation and notion of variable. Another related study on the influence of technology in the



learning of algebraic concepts is by Guzméan and Martinez (2009), who point out that CAS is
useful in the sense that it helps students to identify certain kinds of frequent and persistent
algebraic errors. However, little is known about the influence of this kind of technology on
students’ thinking in relation to the simplification of rational expressions — a topic in which
common algebraic syntax errors are made in a very persistent way due to a lack of conceptual
comprehension on the part of students regarding the manipulation of this kind of expression.

Thus, the aim of this study is to answer the following research question: How do CAS and a
task designed with a technical-theoretical approach influence students’ thinking about the
simplification of rational expressions?

Theoretical Framework

The instrumental approach to tool use has been recognized as a framework rich in theoretical
elements for analyzing the processes of teaching and learning in a CAS context (e.g., Artigue,
2002; Lagrange 2003; Trouche, 2005; among others). The instrumental approach encompasses
elements from both cognitive ergonomics (Vérillon & Rabardel, 1995) and the anthropological
theory of didactics (Chevallard, 1999). According to Monahan (2005), one can distinguish two
directions within the instrumental approach: one in line with the cognitive ergonomics
framework, and the other in line with the anthropological theory of didactics. In the former, the
focus is the development of mental schemes within the instrumental genesis process. Within this
approach, an essential point is the distinction between artifact and instrument (for more details
see Drijvers & Trouche, 2008).

In line with the anthropological approach, researchers such as Artigue (2002) and Lagrange
(2003, 2005) focus on the techniques that students develop while using technology (such as
CAS). This approach is grounded in Chevallard’s anthropological theory. Chevallard (1999)
points out that mathematical objects emerge in a system of practices (praxeologies) that are
characterized by four components: fask (expressed in terms of verbs), in which the object is
embedded; technique, used to solve the task; technology, the discourse that explains and justifies
the technique; and theory, the discourse that provides the structural basis for the technology.
Artigue (2002, p. 248) and her colleagues have reduced Chevallard’s four components to three:
Task, Technique, and Theory, where the term Theory combines Chevallard’s technology and
theory components.

Within this (Task-Technique-Theory) theoretical framework, not only does the term theory
have a wider interpretation than is usual in the anthropological approach, so too does the term
technique have a wider meaning than is usual in educational discourse. Here, a technique is a
manner of carrying out a task; it is a complex assembly of reasoning and routine work and has
both pragmatic and epistemic values (Artigue, 2002, p. 48). For Lagrange (2003, p. 271),
technique is a mixture of routine work and reflection; it is a way of doing a task and it plays a
pragmatic (in the sense of accomplishing the task) and epistemic role. With regard to the
epistemic value of technique, Lagrange (2003, p. 271) has argued that: “Technique plays an
epistemic role by contributing to an understanding of the objects that it handles, particularly
during its elaboration. It also serves as an object for a conceptual reflection when compared with
other techniques and when discussed with regard to consistency”. So, this epistemic value of
techniques is crucial in studying students’ conceptual reflections within a CAS environment. In
our study, this T-T-T framework was taken into account in all aspects, including the designing of
the tasks to be used, the conducting of the interviewer interventions, and the analyzing of the
data that were collected.



The Study
This report is part of a wider research on common literal symbolic errors and the use of CAS.
The analysis and results presented here are based on a pilot study that involved three sets of task
activities, each one designed to take into account a different common error in algebraic syntax.
Here, we analyze and discuss just a part of one of those activities.

Methodology

The Population

The participants were eight 10" grade students (15 years old) of a Mexican public school.
The selection of the students was made by their mathematics teacher, who believed that they
were strong algebra students. It is also well known that students of this particular grade level
make errors in trying to simplify rational expressions — the kinds of errors that we were
interested in investigating. None of the students were accustomed to using CAS calculators;
consequently, at the outset of the study, all the students received some basic training from the
interviewer on how to use the calculator for basic symbol manipulation (use of the commands
FACTOR, EXPAND, and SOLVE).
Task Design

The task proposed in this study concerns the simplification of rational expressions, both with
paper and pencil and CAS. In this report, we use the term activity to refer to “the set of questions
related to the task”. For the design, theoretical elements from the instrumental approach were
used. In other words, the activity was designed so that technical and theoretical questions were
central to the task and, hence, that students would have the opportunity to reflect on both the
technical and theoretical aspects in both paper-and-pencil and CAS environments. In the present
report, only the following parts of the activity are reported: first, students’ paper-and-pencil work
(with technical and theoretical questions); second, their subsequent CAS work (technical
question); and, finally, theoretical questions related to their work in both environments.
Implementation of the Study

The data collection was carried out by the interview method, led by the researcher. Students
worked in pairs; each work session lasted between two and three hours. Each team of two
students had a printed activity as well as a TI-Voyage 200 calculator. Every interview was audio
and video-recorded to register the students’ performance during the sessions.

Analysis and Discussion of the Data

In this report, because of lack of space, we analyze and discuss only one team’s work on a
subset of the actual task questions that were proposed. This team was chosen (we’ll call each
member of the team student A and student B) for this report because we consider that their work
is typical and represents the role played by both the CAS and the designed task. The analysis,
which is qualitative in nature, is based on the team’s work sheets, as well as the video-recorded
interview. The analysis and discussion of the data is detailed below.
The Role of the Proposed Task

We take the first part of the task as solved by the students A and B. As per the task design,
the first section of the activity helped us to know how the students simplify, with paper and
pencil, the given rational expressions. Figure 1a illustrates the students’ techniques and their
explanations related to the simplification of rational expressions. From this, we confirm that, in
this environment, students made the expected errors: they eliminated the ‘literal components’



that were common to both numerator and denominator, without taking into account whether
these ‘literal components’ were, in fact, a factor of both the numerator and the denominator.

1a) Simplifica, usando papel y lapiz, las siguientes expresiones. Muestra todo tu trabajo.
Completa la tabla comenzando con la primera fila.
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Figure 1a. Simplification of expressions: Paper and pencil work.

Ib) Verifica tus respuestas de Ta), para ello, utiliza la calculadora (usa la tecla enter).
Escribe los resultados dados por la calculadora en la siguiente tabla.
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Figure 1b. Simplification of expressions: CAS work.

This part of the task allowed students to describe their paper-and-pencil technique for
simplifying these expressions. We note that their explanation uses the terminology of dividing
(see the second example of Figure 1a, where the students wrote, “we divide the same letters”).
We also note that, whenever there are parentheses, the students first expand the expressions of
the numerator and denominator before cancelling (see the first example of Figure 1a). The fact
that the students spontaneously expanded expressions and didn’t first observe them in terms of
factors was something that hindered their theoretical reflection and seemed to lead them to make
the kinds of errors that are reported in the literature.

Next, the students arrived at the part of the activity where they used the CAS calculator
(Figure 1b). This allowed them to contrast their paper-and-pencil results with those obtained
from the CAS. The differences between the two sets of results led them to wonder about their
paper-and-pencil techniques and explanations. They began to question the theoretical
underpinnings of their work. Hence, the design of the task (technical and theoretical questions in
both environments) clearly led the students to confront their paper-and-pencil results (i.e., their
initial techniques and theory) with the ones obtained from the calculator and promoted the search
for other techniques in order to explain the CAS results.

Theoretical Reflection Promoted by the CAS in Students

From the analysis of the students’ conversation following the surprising CAS results, it was

clear that the results given by the CAS (Figure 1b) provoked in students a conceptual change (the



epistemic role of the techniques, in this case the CAS technique). In other words, the use of the
CAS in the context of the designed task led the students to rethink their techniques and
explanations and provoked a theoretical reflection that could explain for them the results given
by the CAS. For the expressions that involve just one term in the denominator (as in the first
example of Figure 1a), the students could see that their paper-and-pencil technique was not
correct, but could also see how to fix it. As the following extract suggests, they were able to
make a quick adjustment to this technique so as to eliminate the discrepancy between the results:

[1] Student A: What is it? [She asked for the result given by the calculator for the first
expression of Figure 1b]
[2] Student B: x plus 3 [the CAS result for the first expression of Figure 1b]
[3] Student A: And we wrote 3 plus x squared [She refers to the result which they got by paper
and pencil for the first expression of Figure la]
[4] Student B: Yes. We must’ve taken off only one x [Meaning that they had to eliminate
another x]. No matter. What’s next?

It seemed a minor matter to student B to make this kind of adjustment to their technique for
handling the simplification of rational expressions with a single term in the denominator — an
adjustment that called for cancelling each occurrence of the given term in the numerator. But it is
noted that no accompanying theoretical justification seemed forthcoming. However, for the
second and third examples, the students could not easily come up with a simple adjustment to
their paper-and-pencil technique for simplifying rational expressions containing a binomial as
the denominator and two terms in the numerator — that is, an adjustment that would allow them
to arrive at the same result as that produced by the CAS. The following extract illustrates their
bewilderment at the CAS result for the second expression:

[5] Student B: Four [She refers to the result obtained by the calculator for the second expression
of Figure 1b]

[6] Student A: Uh! [Expressing surprise] We are wrong too [Because it doesn’t match up with
their paper-and-pencil result for the second expression of Figure la]

[7] Student B: But I don’t know why. Here I don’t really know why.

[8] Student A: Neither do 1.

For this expression, the students had cancelled the x in the numerator and the denominator, as
well as the y in both, which had left them with 4 + 4, which they simplified to 8. Yet, the CAS
result had been 4. They were similarly unable to explain why, for the third expression, the CAS
did not simplify at all, but merely returned the given rational expression:

[9] Student B: Yes, here [Referring to the first expression of the Figure 1b], it makes sense [the
result given by the calculator] because the x’s were taken off, it first multiplied
and we missed taking off the two x’s. [She states the multiplication procedure
that she thinks the calculator did, just as they had expanded the numerator of the
first expression of the Figure 1b]. But in here, I’'m not quite sure why it’s 4,
neither the result in here [Referring to the last two results (Figure 1b) given by
the calculator]. Why it is the same [referring to the 3 result], I don’t have any
idea.



The two students continue to think about the discrepancies. While they could accommodate
the result given by the CAS for the first example, the other two examples remained mysterious.
They kept asking themselves if there were other ways to think about these simplifications. How
might they justify the results offered by the CAS? The following extract underlines their
dilemma, but then Student A suddenly had an idea:

[10] Student B: It’s believed that in this case we should’ve taken off the x and the y, we take off
both [The repeated terms in the numerator and the denominator of the 2nd
expression in Figure 1b]. But why is it 4? [ The result given by CAS]

[11] Student A: Let’s see [Pause]. This is a division of polynomials!

In line [11], it is clear that the CAS result, for these two examples, has provoked a conceptual
change in one of the students, which was understandable by the other. The theoretical reflection
induced by the discrepant results moved the students from a technique involving eliminating
literal symbols that are repeated in the numerator and the denominator to a technique involving
division of polynomials. Thus, the numerator and denominator of the rational expression are now
viewed as dividend and divisor respectively. But this new theoretical perspective, and its related
technique of dividing the numerator by the denominator, is deemed necessary (by the students)
only for rational expressions where the denominator is a binomial. For those cases where the
denominator is a monomial, they continue to believe that the technique of cancelling the
monomial of the denominator with all of its occurrences in the numerator is workable:

[12] Student A: In numbers 2 and 3 [The last two expression of Figure 1a], we didn’t divide
well.

[13] Interviewer: What do you mean by you didn’t divide well?

[14] Student A: Ok, well, in here... we took off the x s and the y’s. And [Pause].

[15] Interviewer: And can’t we do that?

[16] Student A: Well [Pause] it would do if it were a division of a polynomial by a monomial.

The interviewer then asked the students to illustrate their new paper-and-pencil technique and
to show (see Figure 2) how it helped them to avoid the errors they had made when simplifying
the last two expressions of Figure 1a.

Ie) Si tus respuestas de Ia) no coinciden con los dados por la calculadora en Ib), en uno o en
mas casos, conjetura la razon del error y como se podria evitar; escribelo en el cuadro de
abajo.
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Figure 2. The new technique to simplify rational expressions.

Finally, based on their new technique (long division of polynomials) for simplifying rational
expressions containing a binomial for the denominator, the students were able to explain the



results given by the CAS. For them, to simplify such a rational expression came to mean that one
should divide (numerator divided by denominator). They found, on their own, that if the quotient
works out exactly, then the rational expression can be simplified -- the quotient of the division
being the final simplification. But if the division is not exact, then the rational expression can’t
be simplified and the CAS calculator will give as the result the same expression. It’s interesting
to see how the students came to adapt their new technique and theory so as to make it also fit the
case of rational expressions that could not be simplified. And so, through the technique of
polynomial division, the students came explain the results given by the CAS. However, the
connections between this technique and the one they used to simplify rational expressions where
the denominator was a monomial were never made. For these connections, teacher intervention
would clearly be necessary.

Conclusions

The present report shows that CAS and a task that promotes technical-theoretical thinking,
within an environment involving the reconciling of paper-and-pencil and CAS results, can
provoke in students a conceptual change regarding the simplification of rational expressions
whose denominators are binomials. The change we observed involved moving from, on the one
hand, simplifying expressions through the technique of cancelling out terms that were repetitive
in the numerator and in the dominator to, on the other hand, the division of polynomials
technique. The use of CAS to verify paper-and-pencil work, and the obtaining of surprising
results by the CAS, led students to a theoretical reflection that provoked the use of a new
technique and new theoretical explanations for both justifying the CAS results and rethinking
their paper-and-pencil procedures of simplification. However, such theoretical reflection was not
enough for them to understand the simplification of rational expressions in terms of cancelling
out common factors of the numerator and denominator. These results thus suggest that, in spite
of good tasks and the use of CAS, in order for students to more fully understand rational
expressions and their simplification, including the relation between polynomial division and
factored forms within rational expressions, the importance of teacher intervention is inescapable.

Acknowledgments: The study presented in this report was supported by the grant from “Consejo
Nacional de Ciencia y Tecnologia” (CONACYT), Grant # 49788-S. The authors express their
appreciation to the students who participated in this research, their teacher, and the school
authorities who offered us their facilities for the data collection.

References

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection
about instrumentation and the dialectics between technical and conceptual work.
International Journal of Computers for Mathematical Learning, 7, 245-274.

Ball, L., Pierce, R. & Stacey, K. (2003). Recognizing equivalent algebraic expressions: An
important component of algebraic expectation for working with CAS. In N. A. Pateman, B. J.
Dougherty and J. T. Zilliox (Eds.), Proceedings of the 2003 joint meeting of PME and PME-
NA (Vol. 4, pp. 15-22). Honolulu, HI: PME and PME-NA.

Booth, L. (1984). Algebra: Children’s strategies and errors. Windsor, UK: NFER-NELSON.

Chevallard, Y. (1999). L analyse des pratiques enseignantes en théorie anthropologique du
didactique. Recherches en Didactique des Mathématiques, 19, 221-266.



Davis, R. B., Jockusch, E. & McKnight, C. (1978). Cognitive processes in learning algebra. The
Journal of Children’s Mathematical Behavior, 2(1), 10-320.

Drijvers, P., & Trouche, L. (2008). From artifacts to instruments, a theoretical framework behind
the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on Technology and
the teaching and learning of mathematics: Vol. 2 cases, and perspectives (pp. 363-391).
Charlotte, NC: Information Age Publishing.

Guzmadn, J. & Martinez, C. (2009).The role of task in exploring algebraic linearity
epistemological obstacle in technological environment. In S. L. Swars, D. W. Stinson, & L-S.
Shonda (Eds.), Proceedings of the Thirty-First Annual Meeting of the North American
Chapter of the International Group for the Psychology of Mathematics Education (Vol. 5,
pp. 218-225). Atlanta, GA: PME-NA.

Kieran, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick,
& M. Kendal (Eds.), The future of the teaching and learning of algebra. The 12th ICMI
Study (pp. 21-34). New York: Kluwer Academic Publishers.

Kieran, C. & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil
techniques, and theoretical reflection: A study of CAS use in secondary school algebra.
International Journal of Computers for Mathematical Learning, 11,205-263.

Kieran, C. & Damboise, C. (2007). How can we describe the relation between the factored form
of these trinomials? We don’t even know if our paper-and-pencil factorizations are right: The
case for computer algebra systems (CAS) with weaker algebra students. In J. Woo, H. Lew,
K. Park y D. Seo (Eds.), Proceedings of the 31+ Conference of the International Group for
the Psychology of Mathematics Education (Vol. 3, pp. 105-112). Seoul, Korea: PME.

Kirshner, D. & Awtry, T. (2004). Visual salience of algebraic transformations. Journal for
Research in Mathematics Education, 35(4), 224-257.

Lagrange, J-B. (2003). Learning techniques and concepts using CAS: A practical and theoretical
reflection. In J.T. Fey (Ed.), Computer Algebra Systems in secondary school mathematics
education (pp. 269-283). Reston, VA: National Council of Teachers of Mathematics.

Lagrange, J-B. (2005). Using symbolic calculators to study mathematics. In D. Guin, K.
Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators (pp.
113-135). New York: Springer.

Matz, M. (1980). Towards a computational theory of algebraic competence. The Journal of
Mathematical Behavior, 3 (1), 93-166.

Monaghan, J. (2007). Computer algebra, instrumentation and the anthropological approach. The
International Journal for Technology in Mathematics Education, 12(2), 63-72.

Tall, D. & Thomas, M. (1991). Encouraging versatile thinking in algebra using the computer.
FEducational Studies in Mathematics, 22, 125-147.

Thomas, M., Monaghan, J. & Pierce, R. (2004). Computer algebra systems and algebra:
Curriculum, assessment, teaching, and learning. In K. Stacey, H. Chick, & M. Kendal (Eds.),
The future of the teaching and learning of algebra. The 12th ICMI Study (pp. 155-186). New
York: Kluwer Academic Publishers.

Trouche, L. (2005). An instrumental approach to mathematics learning in symbolic calculator
environments. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of
symbolic calculators (pp. 137-162). New York: Springer.

Vérillon, P. & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of
thought in relation to instrumented activity. European Journal of Psychology of Education,
10, 77-103.



